Skip to main content

Restoring Tropical Forests: Lessons Learned from Case Studies on Three Continents

  • Chapter
  • First Online:
Ecological Restoration

Abstract

Restoring the structural complexity and functional diversity of tropical rainforest is not possible in human time scales but knowledge of the process has significantly increased over the past three decades. Strategies to restore tropical forests must build on theories of community assembly and succession, as well as understanding of both the local ecological and human communities. In this chapter, we discuss three long-term tropical forest restoration case studies in Australia, Costa Rica, and Thailand, each using specific approaches tailored to overcome local ecological, cultural, and socioeconomic constraints. Differences are apparent in the intensity of restoration intervention adopted to manage ecological issues, and in the way local cultures, prevailing socioeconomic conditions, and therefore costs can influence outcomes. Based on the unifying threads identified, we detail key factors essential to recovering tropical biodiversity whilst protecting the livelihoods of landholders on whose land restoration is most likely to occur.

Lead authors of the case studies: Costa Rica: Karen D. Holl & Rakan A. Zahawi; Thailand: Stephen Elliott and Australia: Nigel I. J. Tucker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Policies and incentives, developed under the UN Framework Convention on Climate Change, to finance restoration and conservation of forests as carbon sinks.

References

  • Abram, N. K., MacMillan, D. C., Xofis, P., Ancrenaz, M., Tzanopoulos, J., Ong, R., Goossens, B., Koh, L. P., Del Valle, C., Peter, L., Morel, A. C., Lackman, I., Chung, R., Kler, H., Ambu, L., Baya, W., & Knight, A. T. (2016). Identifying where REDD+ financially out-competes oil palm in floodplain landscapes using a fine-scale approach. PLoS One, 11, e0156481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen, M. F., Allen, E. B., & Gomez-Pompa, A. (2005). Effects of mycorrhizae and nontarget organisms on restoration of a seasonal tropical forest in Quintana Roo, Mexico: Factors limiting tree establishment. Restoration Ecology, 13, 325–333.

    Article  Google Scholar 

  • Armenteras, D., Dávalos, L. M., Barreto, J. S., Miranda, A., Hernández-Moreno, A., Zamorano-Elgueta, C., González-Delgado, T. M., Meza-Elizalde, M. C., & Retana, J. (2021). Fire-induced loss of the world’s most biodiverse forests in Latin America. Science Advances, 7, eabd3357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagong Pagasa Foundation. (2011). Cost comparison analysis ANR compared to conventional reforestation. FAO Regional Office for Asia and the Pacific.

    Google Scholar 

  • Blakesley, D., Elliott, S., Kuarak, C., Navakitbumrung, P., Zangkum, S., & Anusarnsunthorn, V. (2002). Propagating framework tree species to restore seasonally dry tropical forest: Implications of seasonal seed dispersal and dormancy. Forest Ecology and Management, 164, 31–38.

    Article  Google Scholar 

  • Boissier, O., Feer, F., Henry, P.-Y., & Forget, P.-M. (2020). Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level. Ecological Applications, 30, e02086.

    Article  PubMed  Google Scholar 

  • Bradbury, R. B., Butchart, S. H. M., Fisher, B., Hughes, F. M. R., Ingwall-King, L., MacDonald, M. A., Merriman, J. C., Peh, K. S. H., Pellier, A.-S., Thomas, D. H. L., Trevelyan, R., & Balmford, A. (2021). The economic consequences of conserving or restoring sites for nature. Nature Sustainability, 4, 602–608.

    Article  Google Scholar 

  • Brancalion, P. H. S., & Holl, K. D. (2020). Guidance for successful tree planting initiatives. Journal of Applied Ecology, 57, 2349–2361.

    Article  Google Scholar 

  • Brancalion, P. H. S., Meli, P., Tymus, J. R. C., Lenti, F. E. B., Benini, R. M., Silva, A. P. M., Isernhagen, I., & Holl, K. D. (2019). What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biological Conservation, 240, 108274.

    Article  Google Scholar 

  • Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S., & Carlo, T. A. (2020). Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied Ecology, 57, 2329–2339.

    Article  CAS  Google Scholar 

  • Campbell, N. J. H. (1995). Mitochondrial control region variation in two genera of Australian rodents; Melomys and Uromys: Application to phylogenetics, phylogeography and conservation. Southern Cross University.

    Google Scholar 

  • Carpenter, F. L., Mayorga, S. P., Quintero, E. G., & Schroeder, M. (2001). Land-use and erosion of a Costa Rican ultisol affect soil chemistry, mycorrhizal fungi and early regeneration. Forest Ecology and Management, 144, 1–17.

    Article  Google Scholar 

  • Catterall, C. P., & Harrison, D. A. (2006). Rainforest restoration activities in Australia’s tropics and subtropics rainforest. Cooperative Research Centre for Tropical Rainforest Ecology and Management Rainforest CRC.

    Google Scholar 

  • Chang, K., & Andersson, K. P. (2019). Contextual factors that enable forest users to engage in tree-planting for forest restoration. Land Use Policy, 104, 104017.

    Article  Google Scholar 

  • Chawengkul, P. (2019). Effects of forest restoration age on species diversity of epiphytic bryophyte community. Naresuan University.

    Google Scholar 

  • Chayaporn, P., Sasaki, N., Venkatappa, M., & Abe, I. (2021). Assessment of the overall carbon storage in a teak plantation in Kanchanaburi province, Thailand – Implications for carbon-based incentives. Cleaner Environmental Systems, 2, 100023.

    Google Scholar 

  • Chazdon, R. L. (2003). Tropical forest recovery: Legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics, 6, 51–71.

    Article  Google Scholar 

  • Chazdon, R. L., & Guariguata, M. R. (2016). Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica, 48, 716–730.

    Article  Google Scholar 

  • Cole, R. J., Holl, K. D., Zahawi, R. A., Wickey, P., & Townsend, A. R. (2016). Leaf litter arthropod responses to tropical forest restoration. Ecology and Evolution, 6, 5158–5168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbin, J. D., & Holl, K. D. (2012). Applied nucleation as a forest restoration strategy. Forest Ecology and Management, 265, 37–46.

    Article  Google Scholar 

  • Cordell, S., Ostertag, R., Rowe, B., Sweinhart, L., Vasquez-Radonic, L., Michaud, J., Cole, T. C., & Schulten, J. R. (2009). Evaluating barriers to native seedling establishment in an invaded Hawaiian lowland wet forest. Biological Conservation, 142, 2997–3004.

    Article  Google Scholar 

  • de Almeida, D. R. A., Stark, S. C., Valbuena, R., Broadbent, E. N., Silva, T. S. F., de Resende, A. F., Ferreira, M. P., Cardil, A., Silva, C. A., Amazonas, N., Zambrano, A. M. A., & Brancalion, P. H. S. (2020). A new era in forest restoration monitoring. Restoration Ecology, 28, 8–11.

    Article  Google Scholar 

  • de Souza, S. E. X. F., Vidal, E., Chagas, G. d. F., Elgar, A. T., & Brancalion, P. H. S. (2016). Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. Biotropica, 48, 868–881.

    Article  Google Scholar 

  • DellaSala, D. A., Martin, A., Spivak, R., Schulke, T., Bird, B., Criley, M., Van Daalen, C., Kreilick, J., Brown, R., & Aplet, G. (2003). A citizen’s call for ecological forest restoration: Forest restoration principles and criteria. Ecological Restoration, 21, 14–23.

    Article  Google Scholar 

  • Di Sacco, A., Hardwick, K. A., Blakesley, D., Brancalion, P. H. S., Breman, E., Cecilio Rebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., Shaw, K., Smith, P., Smith, R. J., & Antonelli, A. (2021). Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 27, 1328–1348.

    Article  PubMed  Google Scholar 

  • Duchelle, A. E., Seymour, F., Brockhaus, M., Angelsen, A., Moeliono, M., Wong, G. Y., Pham, T. T., & Martius, C. (2018). REDD+: Lessons from national and subnational implementation. World Resources Institute.

    Google Scholar 

  • Elliott, S. (2018). The interface between forest science and policy—A review of the IUFRO International and Multidisciplinary Scientific Conference 4–7 October 2016: Forestry-related policy and governance: Analyses in the environmental social sciences. Natural History Bulletin of the Siam Society, 63, 1–10.

    Google Scholar 

  • Elliott, S., & Kuaraksa, C. (2008). Producing framework tree species for restoring forest ecosystems in northern Thailand. Small-Scale Forestry, 7, 403–415.

    Article  Google Scholar 

  • Elliott, S., Navakitbumrung, P., Zangkum, S., Kuarak, C., Kerby, J., Blakesley, D., & Anusarnsunthorn, V. (2000). Performance of six native tree species, planted to restore degraded forestland in northern Thailand and their response to fertiliser. In S. Elliott, J. Kerby, D. Blakesley, K. Hardwick, K. Woods, & V. Anusarnsunthorn (Eds.), Thailand: Restoration for wildlife conservation: International tropical timber organization and the forest restoration research unit (pp. 244–255). Chiang Mai University.

    Google Scholar 

  • Elliott, S., Kuarak, C., Navakitbumrung, P., Zangkum, S., Anusarnsunthorn, V., & Blakesley, D. (2002). Propagating framework trees to restore seasonally dry tropical forest in northern Thailand. New Forest, 23, 63–70.

    Article  Google Scholar 

  • Elliott, S., Navakitbumrung, P., Kuarak, C., Zangkum, S., Anusarnsunthorn, V., & Blakesley, D. (2003). Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. Forest Ecology and Management, 184, 177–191.

    Article  Google Scholar 

  • Elliott, S., Kuarak, C., Tunjai, P., Polchoo, T., Thongtao, J., & Maxwell, J. (2008). A technical strategy for restoring Krabi’s lowland tropical forest. Forest Restoration Research Unit, Chiang Mai University.

    Google Scholar 

  • Elliott, S., Blakesley, D., & Hardwick, K. (2013). Restoring tropical forests: A practical guide. Royal Botanical Garden.

    Google Scholar 

  • Elliott, S., Chairuangsri, S. Shannon, D. Nippanon, P., & Amphon, R. (2018). Where science meets communities: Developing forest restoration approaches for Northern Thailand. Natural History Bulletin of the Siam Society, 63, 11–26.

    Google Scholar 

  • Evans, K., Guariguata, M. R., & Brancalion, P. H. S. (2018). Participatory monitoring to connect local and global priorities for forest restoration. Conservation Biology, 32, 525–534.

    Article  PubMed  Google Scholar 

  • FAO. (2014). Documenting ANR impacts on biodiversity, water quality and carbon sequestration (Internal Report, Project: TCP/RAS/3307).

    Google Scholar 

  • FAO. (2019). Restoring forest landscapes through assisted natural regeneration (ANR) – A practical manual. Food and Agriculture Organization.

    Google Scholar 

  • Florentine, S. K., Pohlman, C. L., & Westbrooke, M. E. (2016). The effectiveness of different planting frameworks for recruitment of tropical rainforest species on ex-rainforest land. Restoration Ecology, 24, 364–372.

    Article  Google Scholar 

  • Forest Restoration Research Unit. (2008). Research for restoring tropical forest ecosystems: A practical guide. Chiang Mai University.

    Google Scholar 

  • FORRU-CMU. (2005). How to plant a forest: The principles and practice of restoring tropical forests. Chiang Mai University.

    Google Scholar 

  • Fremout, T., Thomas, E., Taedoumg, H., Briers, S., Gutiérrez-Miranda, C. E., Alcázar-Caicedo, C., Lindau, A., Mounmemi Kpoumie, H., Vinceti, B., Kettle, C., Ekué, M., Atkinson, R., Jalonen, R., Gaisberger, H., Elliott, S., Brechbühler, E., Ceccarelli, V., Krishnan, S., Vacik, H., Wiederkehr-Guerra, G., Salgado-Negret, B., González, M. A., Ramírez, W., Moscoso-Higuita, L. G., Vásquez, Á., Cerrón, J., Maycock, C., & Muys, B. (2022). Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate-resilient restoration of tropical forest landscapes. Journal of Applied Ecology, 59, 664–679.

    Article  Google Scholar 

  • Galetti, M., Guevara, R., Côrtes, M. C., Fadini, R., Von Matter, S., Leite, A. B., Labecca, F., Ribeiro, T., Carvalho, C. S., Collevatti, R. G., Pires, M. M., Guimarães, P. R., Brancalion, P. H., Ribeiro, M. C., & Jordano, P. (2013). Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340, 1086–1090.

    Article  CAS  PubMed  Google Scholar 

  • Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., Hallett, J. G., Eisenberg, C., Guariguata, M. R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K., & Dixon, K. W. (2019). International principles and standards for the practice of ecological restoration (Restoration ecology) (Vol. 27, 2nd ed., pp. S1–S46).

    Google Scholar 

  • Gilmour, D. (2007). Applying an adaptive management approach to FLR. In J. Reitbergen-McCraken, S. Maginnis, & A. Sarre (Eds.), The forest landscape restoration handbook (pp. 29–38). Earthscan.

    Google Scholar 

  • González-Varo, J. P., Carvalho, C. S., Arroyo, J. M., & Jordano, P. (2017). Unravelling seed dispersal through fragmented landscapes: Frugivore species operate unevenly as mobile links. Molecular Ecology, 26, 4309–4321.

    Article  PubMed  Google Scholar 

  • Goosem, S., & Tucker, N. I. G. (2013). Repairing the rainforest (2nd ed.). Wet Tropics Management Authority and Biotropica Australia.

    Google Scholar 

  • Gregorio, N., Herbohn, J., Tripoli, R., & Pasa, A. (2020). A local initiative to achieve global forest and landscape restoration challenge—Lessons learned from a community-based forest restoration project in Biliran Province, Philippines. Forests, 11, 475.

    Article  Google Scholar 

  • Guariguata, M. R., & Brancalion, P. H. S. (2014). Current challenges and perspectives for governing forest restoration. Forests, 5, 3022–3030.

    Article  Google Scholar 

  • Guariguata, M. R., Garcia-Fernandez, C., Sheil, D., Nasi, R., Herrero-Jauregui, C., Cronkleton, P., & Ingram, V. (2009). Compatibility of timber and non-timber forest product management in natural tropical forests: Perspectives, challenges, and opportunities. Forest Ecology and Management, 259, 237–245.

    Article  Google Scholar 

  • Guevara, S., Purata, S. E., & Van der Maarel, E. (1986). The role of remnant forest trees in tropical secondary succession. Vegetatio, 66, 77–84.

    Article  Google Scholar 

  • Hagazi, N., Gebrekirstos, A., Birhane, E., Bongers, F., Kelly, R., & Brauning, A. (2020). Land restoration requires a shift from quantity to quality: Lessons from Tigray, Ethiopia. ETFRN News, p. 60.

    Google Scholar 

  • Hobbs, R. J., & Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology, 4, 93–110.

    Article  Google Scholar 

  • Holl, K. D. (2007). Oldfield vegetation succession in the Neotropics. In R. J. Hobbs & V. A. Cramer (Eds.), Old fields (pp. 93–117). Island Press.

    Google Scholar 

  • Holl, K. D. (2012). Tropical forest restoration. In J. Van Andel & J. Aronson (Eds.), Restoration ecology (pp. 103–114). Blackwell Publishing.

    Chapter  Google Scholar 

  • Holl, K. D. (2017). Research directions in tropical forest restoration. Annals of the Missouri Botanical Garden, 102, 237–250.

    Article  Google Scholar 

  • Holl, K. D. (2020). Primer of ecological restoration. Island Press.

    Google Scholar 

  • Holl, K. D., & Aide, T. M. (2011). When and where to actively restore ecosystems? Forest Ecology and Management, 261, 1558–1563.

    Article  Google Scholar 

  • Holl, K. D., & Zahawi, R. A. (2014). Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 319, 36–43.

    Article  Google Scholar 

  • Holl, K. D., Loik, M. E., Lin, E. H. V., & Samuels, I. A. (2000). Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restoration Ecology, 8, 339–349

    Google Scholar 

  • Holl, K. D., Zahawi, R. A., Cole, R. J., Ostertag, R., & Cordell, S. (2011). Planting seedlings in tree islands versus plantations as a large-scale tropical forest restoration strategy. Restoration Ecology, 19, 470–479.

    Article  Google Scholar 

  • Holl, K. D., Stout, V. M., Reid, J. L., & Zahawi, R. A. (2013). Testing heterogeneity-diversity relationships in tropical forest restoration. Oecologia, 173, 569–578.

    Article  PubMed  Google Scholar 

  • Holl, K. D., Reid, J. L., Chaves-Fallas, J. M., Oviedo-Brenes, F., & Zahawi, R. A. (2017). Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. Journal of Applied Ecology, 54, 1091–1099.

    Article  Google Scholar 

  • Holl, K. D., Reid, J. L., Oviedo-Brenes, F., Kulikowski, A. J., & Zahawi, R. A. (2018). Rules of thumb for predicting tropical forest recovery. Applied Vegetation Science, 21, 669–677.

    Article  Google Scholar 

  • Holl, K. D., Reid, J. L., Cole, R. J., Oviedo-Brenes, F., Rosales, J. A., & Zahawi, R. A. (2020). Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15-year study. Journal of Applied Ecology, 57, 2316–2328.

    Article  Google Scholar 

  • Howe, H. F. (2016). Making dispersal syndromes and networks useful in tropical conservation and restoration. Global Ecology and Conservation, 6, 152–178.

    Article  Google Scholar 

  • Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228.

    Article  Google Scholar 

  • Jansen, P. A., Hirsch, B. T., Emsens, W.-J., Zamora-Gutierrez, V., Wikelski, M., & Kays, R. (2012). Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences, 109, 12610–12615.

    Article  CAS  Google Scholar 

  • Jantawong, K., Elliott, S., & Wangpakapattanawong, P. (2017). Above-ground carbon sequestration during restoration of upland evergreen forest in northern Thailand. Open Journal of Forestry, 7, 157–171.

    Article  Google Scholar 

  • Jantawong, K., Kavinchan, N., Wangpakapattanawong, P., & Elliott, S. (2022). Financial analysis of potential carbon value over 14 years of forest restoration by the framework species method. Forests, 13, 144.

    Article  Google Scholar 

  • Janzen, D. H. (2002). Tropical dry forest: Area de Conservación Guanacaste, northwestern Costa Rica. In M. R. Perrow & A. J. Davy (Eds.), Handbook of ecological restoration (pp. 559–583). Cambridge University Press.

    Google Scholar 

  • Kavinchan, N., Wangpakapattanawong, P., Elliott, S., Chairuangsri, S., & Pinthong, J. (2015). Use of the framework species method to restore carbon flow via litterfall and decomposition in an evergreen tropical forest ecosystem, northern Thailand. Agriculture and Natural Resources, 49, 639–650.

    CAS  Google Scholar 

  • Kim, S. (2012). Identifying framework tree species for restoring forest ecosystems in Siem Reap Province. Royal University of Agriculture.

    Google Scholar 

  • Kulikowski, A. J., Zahawi, R. A., Werden, L. K., Zhu, K., Holl Karen, D. (2023). Restoration interventions mediate tropical tree recruitment dynamics over time. Philosophical Transactions of the Royal Society B-Biological Sciences, 378, 20210077.

    Google Scholar 

  • Lamb, D., Erskine, P. D., & Parrotta, J. D. (2005). Restoration of degraded tropical forest landscapes. Science, 310, 1628–1632.

    Article  CAS  PubMed  Google Scholar 

  • Lanuza, O., Casanoves, F., Zahawi, R. A., Celentano, D., Delgado, D., & Holl, K. D. (2018). Litterfall and nutrient dynamics shift in tropical forest restoration sites after a decade of recovery. Biotropica, 50, 491–498.

    Article  Google Scholar 

  • Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., Lees, J. C., & Gaughan, J. B. (2019). The impact of heat load on cattle. Animals, 9, 322.

    Article  PubMed  PubMed Central  Google Scholar 

  • Letcher, S. G., & Chazdon, R. L. (2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica, 41, 608–617.

    Article  Google Scholar 

  • Mansourian, S. (2020). Enabling factors to scale up forest landscape restoration: The roles of governance and economics. WWF/IUFRO.

    Google Scholar 

  • Mansourian, S., & Vallauri, D. (2014). Restoring forest landscapes: Important lessons learnt. Environmental Management, 53, 241–251.

    Article  PubMed  Google Scholar 

  • Mappin, B., Ward, A., Hughes, L., Watson, J. E. M., Cosier, P., & Possingham, H. P. (2021). The costs and benefits of restoring a continent’s terrestrial ecosystems. Journal of Applied Ecology, 59, 408–419.

    Article  Google Scholar 

  • Marín-Spiotta, E., Cusack, D. F., Ostertag, R., & Silver, W. L. (2008). Trends in above and belowground carbon with forest regrowth after agricultural abandonment in the neotropics. In R. Myster (Ed.), Post-agricultural succession in the neotropics (pp. 22–72). Springer.

    Chapter  Google Scholar 

  • Maxwell, J. F. (2001). Vegetation and vascular flora of Doi Sutep-Pui National park, northern Thailand. Biodiversity Research and Training Program.

    Google Scholar 

  • McDonald, T., Jonson, J., & Dixon, K. W. (2016). National standards for the practice of ecological restoration in Australia. Restoration Ecology, 24, S4–S32.

    Article  Google Scholar 

  • Meli, P., Martínez-Ramos, M., Rey-Benayas, J. M., & Carabias, J. (2014). Combining ecological, social and technical criteria to select species for forest restoration. Applied Vegetation Science, 17, 744–753.

    Article  Google Scholar 

  • Mendenhall, C. D., Sekercioglu, C. H., Brenes, F. O., Ehrlich, P. R., & Daily, G. C. (2011). Predictive model for sustaining biodiversity in tropical countryside. Proceedings of the National Academy of Sciences of the United States of America, 108, 16313–16316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Mateos, D., Barbier, E. B., Jones, P. C., Jones, H. P., Aronson, J., Lopez-Lopez, J. A., McCrackin, M. L., Meli, P., Montoya, D., & Benayas, J. M. R. (2017). Anthropogenic ecosystem disturbance and the recovery debt. Nature Communications, 8, 14163.

    Google Scholar 

  • Nandakwang, P., Elliott, S., Youpensook, S., Dell, B., Teaumroon, N., & Lumyong, S. (2008). Arbuscular mycorrhizal status of indigenous tree species used to restore seasonally dry tropical forest in northern Thailand. Research Journal of Microbiology, 3, 51–61.

    Article  Google Scholar 

  • Nepstad, D. C., Stickler, C. M., Soares, B., & Merry, F. (2008). Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 1737–1746.

    Article  PubMed Central  Google Scholar 

  • Norden, N., Angarita, H. A., Bongers, F., Martinez-Ramos, M., Granzow-de la Cerda, I., Breugel, M., Lebrija-Trejos, E., Meave, J. A., Vandermeer, J., Williamson, G. B., Finegan, B., Mesquita, R., & Chazdon, R. L. (2015). Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences of the United States of America, 112, 8013–8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong, R. (2011). Recent forest restoration initiatives in Sabah, Malaysia. In P. B. Durst, P. Sajise, & L. Leslie (Eds.), Forests beneath the grass (pp. 119–124). Food and Agriculture Organization, Regional Office for Asia and the Pacific.

    Google Scholar 

  • Paetkau, D., Vazquez-Dominguez, E., Tucker, N. I. G., & Moritz, C. (2009). Monitoring movement into and through a newly planted rainforest corridor using genetic analysis of natal origin. Ecological Management & Restoration, 10, 201–216.

    Article  Google Scholar 

  • Parrotta, J. A., Knowles, O. H., & Wunderle, J. M. (1997). Development of floristic diversity in 10-year-old restoration forests on a bauxite mined site in Amazonia. Forest Ecology and Management, 99, 21–42.

    Article  Google Scholar 

  • Pedrini, S., & Dixon, K. W. (2020). International principles and standards for native seeds in ecological restoration. Restoration Ecology, 28, S286–S303.

    Google Scholar 

  • Phongchiewboon, A. (2006). Recovery of lichen diversity during forest restoration in northern Thailand. Chiang Mai University, M.Sc. thesis.

    Google Scholar 

  • Pirard, R., de Buren, G., & Lapeyre, R. (2014). Do PES improve the governance of forest restoration? Forests, 5, 404–424.

    Article  Google Scholar 

  • Porras, I., Grieg-Gran, M., & Neves, N. (2008). A review of payments for watershed services in developing countries (Natural resource issues no. 11). International Institute for Environment and Development.

    Google Scholar 

  • Pothong, T., Elliott, S., Chairuangsri, S., Chanthorn, W., Shannon, D. P., & Wangpakapattanawong, P. (2021). New allometric equations for quantifying tree biomass and carbon sequestration in seasonally dry secondary forest in northern Thailand. New Forest, 53, 17.

    Article  Google Scholar 

  • Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48, 497–519.

    Article  Google Scholar 

  • Ramos, D. L., Pizo, M. A., Ribeiro, M. C., Cruz, R. S., Morales, J. M., & Ovaskainen, O. (2020). Forest and connectivity loss drive changes in movement behavior of bird species. Ecography, 43, 1203–1214.

    Article  Google Scholar 

  • Raupp, P. P., Ferreira, M. C., Alves, M., Campos-Filho, E. M., Sartorelli, P. A. R., Consolaro, H. N., & Vieira, D. L. M. (2020). Direct seeding reduces the costs of tree planting for forest and savanna restoration. Ecological Engineering, 148, 105788.

    Article  Google Scholar 

  • Reid, J. L., Mendenhall, C. D., Rosales, J. A., Zahawi, R. A., & Holl, K. D. (2014). Landscape context mediates avian habitat choice in tropical forest restoration. PLoS One, 9, e90573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid, J. L., Holl, K. D., & Zahawi, R. A. (2015a). Seed dispersal limitations shift over time in tropical forest restoration. Ecological Applications, 25, 1072–1082.

    Article  PubMed  Google Scholar 

  • Reid, J. L., Mendenhall, C. D., Zahawi, R. A., & Holl, K. D. (2015b). Scale-dependent effects of forest restoration on Neotropical fruit bats. Restoration Ecology, 23, 681–689.

    Article  Google Scholar 

  • Reid, J. L., Chaves-Fallas, J. M., Holl, K. D., & Zahawi, R. A. (2016). Tropical forest restoration enriches vascular epiphyte recovery. Applied Vegetation Science, 19, 508–517.

    Article  Google Scholar 

  • Reid, J. L., Fagan, M. E., Lucas, J., Slaughter, J., & Zahawi, R. A. (2019). The ephemerality of secondary forests in southern Costa Rica. Conservation Letters, 12, e12607.

    Article  Google Scholar 

  • Reid, J. L., Korrman, U., Zarate-Charry, D., Holl, K. D., & Zahawi, R. A. (2021). Multi-scale habitat selection of key frugivores predicts large-seeded tree recruitment in tropical forest restoration. Ecosphere, 12, e03868.

    Google Scholar 

  • Rodrigues, R. R., Lima, R. A. F., Gandolfi, S., & Nave, A. G. (2009). On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation, 142, 1242–1251.

    Article  Google Scholar 

  • Sansupa, C., Purahong, W., Wubet, T., Tiansawat, P., Pathom-Aree, W., Teaumroong, N., Chantawannakul, P., Buscot, F., Elliott, S., & Disayathanoowat, T. (2021). Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand. PLoS One, 16, e0248806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangsupan, H. A., Hibbs, D. E., Withrow-Robinson, B. A., & Elliott, S. (2018). Seed and microsite limitations of large-seeded, zoochorous trees in tropical forest restoration plantations in northern Thailand. Forest Ecology and Management, 419–420, 91–100.

    Google Scholar 

  • Sapanthuphong, A., Thampituk, S., & SukIn, A. (2011). Restoration of degraded forests in dry areas: Concepts and practices for forest restoration in the western region. Elephant Conservation Network.

    Google Scholar 

  • Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R., & Uriarte, M. (2020). Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Frontiers in Forests and Global Change, 3, 85.

    Article  Google Scholar 

  • Shaw, J. A., Roche, L. M., & Gornish, E. S. (2020). The use of spatially-patterned methods for vegetation restoration and management across systems. Restoration Ecology, 28, 766–775.

    Article  Google Scholar 

  • Silver, W. L., Ostertag, R., & Lugo, A. E. (2000). The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restoration Ecology, 8, 394–407.

    Article  Google Scholar 

  • Sinhaseni, K. (2008). Natural establishment of tree seedlings in forest restoration trials at Ban Mae Sa Mai, Chiang Mai Province. M.Sc. thesis, Chiang Mai University.

    Google Scholar 

  • Sloan, S., Meyfroidt, P., Rudel, T. K., Bongers, F., & Chazdon, R. (2019). The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. Global Environmental Change, 59, 101988.

    Article  Google Scholar 

  • Swinfield, T., Afriandi, R., Antoni, F., & Harrison, R. D. (2016). Accelerating tropical forest restoration through the selective removal of pioneer species. Forest Ecology and Management, 381, 209–216.

    Article  Google Scholar 

  • TEEB. (2009). TEEB climate issues update. http://www.teebweb.org/publication/climate-issues-update/

  • Toktang, T. (2005). The effects of forest restoration on the species diversity and composition of a bird community in Doi Suthep-Pui National Park Thailand from 2002–2003. M.Sc. thesis, Chiang Mai University.

    Google Scholar 

  • Tucker, N. I. J. (2000). Linkage restoration: Interpreting fragmentation theory for the design of a restored habitat linkage in tropical north-eastern Queensland. Ecological Management & Restoration, 1, 35–42.

    Article  Google Scholar 

  • Tucker, N. I. J., & Murphy, T. M. (1997). The effects of ecological rehabilitation on vegetation recruitment: Some observations from the Wet Tropics of North Queensland. Forest Ecology and Management, 99, 133–152.

    Article  Google Scholar 

  • Tucker, N. I. G., & Simmons, T. (2009). Restoring a rainforest habitat linkage in north Queensland: Donaghy’s Corridor. Ecological Management & Restoration, 10, 98–112.

    Article  Google Scholar 

  • Vázquez-Yanes, C., & Orozco-Segovia, A. (1993). Patterns of seed longevity and germination in the tropical rainforest. Annual Review of Ecology and Systematics, 24, 69–87.

    Article  Google Scholar 

  • Viani, R. A. G., Holl, K. D., Padovezi, A., Strassburg, B. B. N., Farah, F. T., Garcia, L. C., Chaves, R. B., Rodrigues, R. R., & Brancalion, P. H. S. (2017). Protocol for monitoring tropical forest restoration: Perspectives from the Atlantic Forest Restoration Pact in Brazil. Tropical Conservation Science, 10, 1940082917697265.

    Article  Google Scholar 

  • Viani, R. A. G., Barreto, T. E., Farah, F. T., Rodrigues, R. R., & Brancalion, P. H. S. (2018). Monitoring young tropical forest restoration sites: How much to measure? Tropical Conservation Science, 11, 1940082918780916.

    Article  Google Scholar 

  • Vieira, D. L. M., & Scariot, A. (2006). Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology, 14, 11–20.

    Article  Google Scholar 

  • Wangpakapattanawong, P., Kavinchan, N., Vaidhayakarn, C., Schmidt-Vogt, D., & Elliott, S. (2010). Fallow to forest: Applying indigenous and scientific knowledge of swidden cultivation to tropical forest restoration. Forest Ecology and Management, 260, 1399–1406.

    Article  Google Scholar 

  • Werden, L. K., Holl, K. D., Rosales, J. A., Sylvester, J. M., & Zahawi, R. A. (2020). Effects of dispersal- and niche-based factors on tree recruitment in tropical wet forest restoration. Ecological Applications, 30, e02139.

    Article  PubMed  Google Scholar 

  • Werden, L. K., Holl, K. D., Chaves-Fallas, J. M., Oviedo-Brenes, F., Rosales, J. A., & Zahawi, R. A. (2021). Degree of intervention affects interannual and within-plot heterogeneity of seed arrival in tropical forest restoration. Journal of Applied Ecology, 58, 1693–1704.

    Article  Google Scholar 

  • Weyerhaeuser, H., & Kahrl, F. (2006). Planting trees on farms in southwest China. Mountain Research and Development, 26, 205–208.

    Google Scholar 

  • Wilson, S. J., Alexandre, N. S., Holl, K. D., Reid, J. L., Zahawi, R. A., Celentano, D., Sprenkle-Hyppolite, S. D., & Werden, L. K. (2021). Applied nucleation guide for tropical forests. Conservation International.

    Google Scholar 

  • Zahawi, R. A., & Reid, J. L. (2018). Tropical secondary forest enrichment using giant stakes of keystone figs. Perspectives in Ecology and Conservation, 16, 133–138.

    Article  Google Scholar 

  • Zahawi, R. A., Reid, J. L., & Holl, K. D. (2014). Hidden costs of passive restoration. Restoration Ecology, 22, 284–287.

    Article  Google Scholar 

  • Zahawi, R. A., Werden, L. K., San-José, M., Rosales, J. A., Flores, J., & Holl, K. D. (2021). Proximity and abundance of mother trees affects recruitment patterns in a long-term tropical forest restoration study. Ecography, 44, 1826–1837.

    Article  Google Scholar 

  • Zarin, D. J., Ducey, M. J., Tucker, J. M., & Salas, W. A. (2001). Potential biomass accumulation in Amazonian regrowth forests. Ecosystems, 4, 658–668.

    Article  Google Scholar 

  • Zimmerman, J. K., Aide, T. M., & Lugo, A. E. (2007). Implications of land use history for natural forest regeneration and restoration strategies in Puerto Rico. In R. J. Hobbs & V. A. Cramer (Eds.), Old fields (pp. 51–74). Island Press.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to NSF for financial backing connected to the Islas Project (DEB 05-15577; DEB 09-18112; DEB 14-56520, DEB 20-16623), which provided support for the work of K.D.H. and R.A.Z. Also, thanks are recorded to Biotropica Australia Pty Ltd. for supporting NT’s study and to Chiang Mai University for supporting S.E.’s work on this chapter. We are grateful to the many field assistants and landowners who made the results reported here possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel I. J. Tucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tucker, N.I.J., Elliott, S., Holl, K.D., Zahawi, R.A. (2023). Restoring Tropical Forests: Lessons Learned from Case Studies on Three Continents. In: Florentine, S., Gibson-Roy, P., Dixon, K.W., Broadhurst, L. (eds) Ecological Restoration. Springer, Cham. https://doi.org/10.1007/978-3-031-25412-3_3

Download citation

Publish with us

Policies and ethics