Skip to main content

A Certificate-Based Pairwise Key Establishment Protocol for IoT Resource-Constrained Devices

  • Conference paper
  • First Online:
Pan-African Artificial Intelligence and Smart Systems (PAAISS 2022)

Abstract

In this paper, we address the problem of security in communication between IoT resource-constrained devices. We propose a peer-to-peer key establishment protocol based on implicit certificates and elliptic curves for low-capacity devices such as sensors. Using an AVL tree, we formulate the relationship between nodes in the same group as a certification chain. We propose a strategy that distributes the load of cryptographic computation over all nodes in the group. The group leader is the root certification authority of its group, and constructs an AVL tree from which a certification chain is established in an ordered fashion with an intermediate certification authority at each level of the tree. The primary nodes of each level are intermediate certification authorities. This trust chain will be used by the nodes to create and exchange implicit certificates on an elliptical curve. For communication between nodes, symmetric keys are derived from the certificates thus created. A realistic implementation of the protocol with TelosB sensors on the TOSSIM simulator shows the robustness of the protocol. In the worst case, the maximum size consumed for RAM is 4101 bytes and 24944 bytes for ROM. When we consider that a TelosB node offers up to 48 kb of ROM for 10 kb of RAM, we can conclude that the protocol is light enough to accommodate resource-constrained devices. Finally, we compare our proposal to three other well-known protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitsaadi, N., Boutaba, R., Takahashi, Y.: Cloudification of the internet of things. Ann. Telecommun. 72(1), 1–2 (2017)

    Article  Google Scholar 

  2. Albakri, A., Harn, L., Song, S.: Hierarchical key management scheme with probabilistic security in a wireless sensor network (WSN). Secur. Commun. Netw. 2019 (2019)

    Google Scholar 

  3. Ari, A.A.A., Djedouboum, A.C., Gueroui, M., Thiare, O., Mohamadou, A., Aliouat, Z.: A three-tier architecture of large-scale wireless sensor networks for big data collection. Appl. Sci. 10(15), 5382 (2020)

    Article  Google Scholar 

  4. Ari, A.A.A., Labraoui, N., Yenké, B.O., Gueroui, A.: Clustering algorithm for wireless sensor networks: the honeybee swarms nest-sites selection process based approach. Int. J. Sens. Netw. 27(1), 1–13 (2018)

    Article  Google Scholar 

  5. Ari, A.A.A., Yenke, B.O., Labraoui, N., Damakoa, I., Gueroui, A.: A power efficient cluster-based routing algorithm for wireless sensor networks: honeybees swarm intelligence based approach. J. Netw. Comput. Appl. 69, 77–97 (2016)

    Article  Google Scholar 

  6. Azarderskhsh, R., Reyhani-Masoleh, A.: Secure clustering and symmetric key establishment in heterogeneous wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2011, 1–12 (2011)

    Article  Google Scholar 

  7. Boumerzoug, H., Amar Bensaber, B., Biskri, I.: A key management method based on an AVL tree and ECC cryptography for wireless sensor networks. In: Proceedings of the 7th ACM Symposium on QoS and Security for Wireless and Mobile Networks, pp. 57–62 (2011)

    Google Scholar 

  8. Campagna, M.: SEC 4: elliptic curve Qu-Vanstone implicit certificate scheme (ECQV). Standards for Efficient Cryptography, Version 1 (2013)

    Google Scholar 

  9. Chatterjee, U., Ray, S., Khan, M.K., Dasgupta, M., Chen, C.M.: An ECC-based lightweight remote user authentication and key management scheme for IoT communication in context of fog computing. Computing 1–37 (2022)

    Google Scholar 

  10. Djedouboum, A.C., Ari, A.A.A., Gueroui, A.M., Mohamadou, A., Thiare, O., Aliouat, Z.: A framework of modeling large-scale wireless sensor networks for big data collection. Symmetry 12(7), 1113 (2020)

    Article  Google Scholar 

  11. Djerassem, L., Tieudjo, D.: On congruent numbers elliptic curves. IOSR J. Math. 16(3), 1–5 (2020)

    Google Scholar 

  12. Gautam, A.K., Kumar, R.: A comprehensive study on key management, authentication and trust management techniques in wireless sensor networks. SN Appl. Sci. 3(1), 1–27 (2021). https://doi.org/10.1007/s42452-020-04089-9

    Article  MathSciNet  Google Scholar 

  13. Gbadouissa, J.E.Z., Ari, A.A.A., Titouna, C., Gueroui, A.M., Thiare, O.: HGC: hypergraph based clustering scheme for power aware wireless sensor networks. Future Gener. Comput. Syst. 105, 175–183 (2020)

    Article  Google Scholar 

  14. Hamidouche, R., Aliouat, Z., Ari, A.A.A., Gueroui, A.: Mobile sink path planning in heterogeneous IoT sensors: a SALP swarm algorithm scheme. KSII Trans. Internet Inf. Syst. 15(6), 2225–2239 (2021)

    Google Scholar 

  15. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, p. 10. IEEE (2000)

    Google Scholar 

  16. Housley, R.: Internationalization updates to RFC 5280. Technical report (2018)

    Google Scholar 

  17. Jokhio, S.H., Jokhio, I.A., Kemp, A.H.: Node capture attack detection and defence in wireless sensor networks. IET Wirel. Sens. Syst. 2(3), 161–169 (2012)

    Article  Google Scholar 

  18. Keivani, A., Ghayoor, F., Tapamo, J.R.: Collaborative mobile edge computing in Ev2x: a solution for low-cost driver assistance systems. Wirel. Pers. Commun. 118(3), 1869–1882 (2021)

    Article  Google Scholar 

  19. Khedim, F., Labraoui, N., Ari, A.A.A.: A cognitive chronometry strategy associated with a revised cloud model to deal with the dishonest recommendations attacks in wireless sensor networks. J. Netw. Comput. Appl. 123, 42–56 (2018)

    Article  Google Scholar 

  20. Kotzanikolaou, P., Magkos, E.: Hybrid key establishment for multiphase self-organized sensor networks. In: Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, pp. 581–587. IEEE (2005)

    Google Scholar 

  21. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008), pp. 245–256 (2008). https://doi.org/10.1109/IPSN.2008.47

  22. Lu, R., Li, X., Liang, X., Shen, X., Lin, X.: GRS: the green, reliability, and security of emerging machine to machine communications. IEEE Commun. Mag. 49(4), 28–35 (2011)

    Article  Google Scholar 

  23. Majumder, S., Ray, S., Sadhukhan, D., Khan, M.K., Dasgupta, M.: ECC-CoAP: elliptic curve cryptography based constraint application protocol for internet of things. Wirel. Pers. Commun. 116(3), 1867–1896 (2021)

    Article  Google Scholar 

  24. Myoupo, J.F., Nana, B.P., Tchendji, V.K.: Fault-tolerant and energy-efficient routing protocols for a virtual three-dimensional wireless sensor network. Comput. Electr. Eng. 72, 949–964 (2018)

    Article  Google Scholar 

  25. Ngangmo, O.K., Ari, A.A.A., Alidou, M., Thiare, O., Kolyang, D.T.: Guarantees of differential privacy in cloud of things: a multilevel data publication scheme. Int. J. Eng. Res. Afr. 56, 199–212 (2021)

    Article  Google Scholar 

  26. Poornima, A., Amberker, B.: Tree-based key management scheme for heterogeneous sensor networks. In: 2008 16th IEEE International Conference on Networks, pp. 1–6. IEEE (2008)

    Google Scholar 

  27. Porambage, P., Kumar, P., Schmitt, C., Gurtov, A., Ylianttila, M.: Certificate-based pairwise key establishment protocol for wireless sensor networks. In: 2013 IEEE 16th International Conference on Computational Science and Engineering, pp. 667–674. IEEE (2013)

    Google Scholar 

  28. Prakasha, K., Muniyal, B., Acharya, V., Krishna, S., Prakash, S.: Efficient digital certificate verification in wireless public key infrastructure using enhanced certificate revocation list. Inf. Secur. J. Glob. Perspect. 27(4), 214–229 (2018)

    Article  Google Scholar 

  29. Qin, Z., Zhang, X., Feng, K., Zhang, Q., Huang, J.: An efficient key management scheme based on ECC and AVL tree for large scale wireless sensor networks. Int. J. Distrib. Sens. Netw. 11(9), 691498 (2015)

    Google Scholar 

  30. Rana, M., Mamun, Q., Islam, R.: Lightweight cryptography in IoT networks: a survey. Future Gener. Comput. Syst. 129, 77–89 (2022)

    Article  Google Scholar 

  31. Suárez-Albela, M., Fernández-Caramés, T.M., Fraga-Lamas, P., Castedo, L.: A practical performance comparison of ECC and RSA for resource-constrained IoT devices. In: 2018 Global Internet of Things Summit (GIoTS), pp. 1–6. IEEE (2018)

    Google Scholar 

  32. Sun, Y., Yin, S., Liu, J., Teng, L.: A certificateless group authenticated key agreement protocol based on dynamic binary tree. Int. J. Netw. Secur. 21(5), 843–849 (2019)

    Google Scholar 

  33. Yousefpoor, M.S., Barati, H.: Dynamic key management algorithms in wireless sensor networks: a survey. Comput. Commun. 134, 52–69 (2019)

    Article  Google Scholar 

  34. Zhang, Y.Y., Yang, W.C., Kim, K.B., Park, M.S.: An AVL tree-based dynamic key management in hierarchical wireless sensor network. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 298–303. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ado Adamou Abba Ari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Djam-Doudou, M. et al. (2023). A Certificate-Based Pairwise Key Establishment Protocol for IoT Resource-Constrained Devices. In: Ngatched Nkouatchah, T.M., Woungang, I., Tapamo, JR., Viriri, S. (eds) Pan-African Artificial Intelligence and Smart Systems. PAAISS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 459. Springer, Cham. https://doi.org/10.1007/978-3-031-25271-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25271-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25270-9

  • Online ISBN: 978-3-031-25271-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics