Skip to main content

Small Animal PET Imaging: Towards an Imaging Analysis Approach for System Average Performance Conclusion

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13637))

Included in the following conference series:

  • 399 Accesses

Abstract

The purpose of this study is to present a novel small animal PET imaging system, which can be integrated with a small animal CT or MRI imaging in a PET/CT or PET/MRI schemes. The specific small animal PET imaging design consists of two planar detectors, with LYSO crystals, followed by Position Sensitive Photomultiplier tubes (PSPMTs). The output of the each PSPMTS is led to the corresponding modern electronics for analysis and digitization while at the end is stored on a host computer for further processing. In order to evaluate the average performance of the aforementioned PET system, SIMSET simulation tool was used. So, the small animal PET imaging system was simulated, taking into account that the radioactive source inside it’s field of view was a Derenzo-like phantom full of FDG. Attenuation and scatter phenomena, as well as random events were also considered during simulation process. The simulated data (Derenzo-like phantom sinogram) was then reconstructed with the ordered subsets versions of EM-ML, ISRA and WLS algorithms, considering regularization and penalized schemes. Regularization techniques accelerate reconstruction procedure while penalized methods increase signal to noise ratios with small image resolution degradation. Reconstructed images are further analyzed and evaluated so that a general conclusion on final system resolution output to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phelps, M.E.: Pet Molecular Imaging and Its Applications. Springer, New York (2004). ch. 1

    Google Scholar 

  2. Cherry, S.R., Gambhir, S.S.: Use of positron emission tomography in animal research. ILAR J. 42(3), 219–231 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Cherry, S.R., et al.: MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans. Nucl. Sci. 44, 1161–1166 (1997)

    Article  CAS  Google Scholar 

  4. Jeavons, A.P., Chandler, R.A., Dettmar, C.A.R.: A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans. Nucl. Sci. 46, 468–478 (1999)

    Article  Google Scholar 

  5. Weber, S., et al.: The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity. IEEE Trans. Med. Imaging 16(5), 684–689 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Del Guerra, A., Di Domenico, G., Scandola, M., Zavattini, G.: YAP-PET: first results of small animal positron emission tomograph based on YAP:Ce finger crystals. IEEE Trans. Nucl. Sci. 45(6), 3105–3108 (1998)

    Article  Google Scholar 

  7. Mather, A.R., et al.: SmartPET image reconstruction techniques and results, September 2005

    Google Scholar 

  8. Rouze, N.C., Winkle, W., Hutchins, G.D.: IndyPET - a high resolution, high sensitivity dedicated research scanner. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference, Seatle, WA, October 1999

    Google Scholar 

  9. McElroy, D.P., et al.: First results from MADPET-II: a novel detector and readout system for high resolution PET. In: IEEE NSS/MIC Conference Record (2003)

    Google Scholar 

  10. Pichler, B.J., Böning, G., Rafecas, M., Pimpl, W., Schwaiger, M., Ziegler, S.I.: A 32-channel LSO matrix coupled to a monolithic 4x8 APD array for high resolution PET. IEEE Trans. Nucl. Sci. 48, 1391–1396 (2001)

    Article  Google Scholar 

  11. Siegel, S.: Initial results from a PET/planar small animal imaging system. IEEE Trans. Nucl. Sci. 46(3), 571–575 (1999)

    Article  Google Scholar 

  12. Surti, S., Karp, J.S., Perkins, A.E., Freifelder, R., Muehllehner, G.: Design evaluation of A-PET: a high sensitivity animal PET camera. IEEE Trans. Nucl. Sci. 50(5), 1357–1363 (2003)

    Article  Google Scholar 

  13. Lage, E., et al.: VrPET/CT: development of a rotating multimodality scanner for small-animal imaging. In: 2008 IEEE Nuclear Science Symposium Conference Record, M10-64 (2008)

    Google Scholar 

  14. Alva-Sanchez, H., et al.: A small-animal PET system based on LYSO crystal arrays, PS-PMTs and a PCI DAQ board. IEEE Trans. Nucl. Sci. 57(1), 85–93 (2010)

    Article  CAS  Google Scholar 

  15. Deng, Z., Deng, Y., Chen, G.: Design and evaluation of LYSO/SiPM LIGHTENING PET detector with DTI sampling method. Sensors 20, 5820 (2020). MDPI

    Google Scholar 

  16. Lai, Y., et al.: H2RSPET: a 0.5 mm resolution high-sensitivity small-animal PET scanner, a simulation study. Phys. Med. Biol. 66(6), March 2021. IOP

    Google Scholar 

  17. Gonzalez, A.J., et al.: Feasibility study of a small animal PET insert based on a single LYSO monolithic tube. Front. Med., 28 November 2018

    Google Scholar 

  18. Lamprou, E., Gonzalez, A.J., Sanchez, F., Benlloch, J.M.: Exploring TOF capabilities of PET detector blocks based on large monolithic crystals and analog SiPMs. Phys. Med. 70, 10–18 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ortuno, J.E., Guerra-Gutierrez, P., Rubio, J.L., Kontaxakis, G., Santos, A.: 3D-OSEM iterative image reconstruction for high resolution PET using precalculated system matrix. ITBS (2005)

    Google Scholar 

  20. Tarantola, G., Zito, F., Gerundini, P.: PET instrumentation and reconstruction algorithms in whole-bode applications. J. Nucl. Med. 44(5), 756–768 (2003)

    PubMed  Google Scholar 

  21. Kinahan, P.E., Karp, J.S.: Figures of merit for comparing reconstruction algorithms with a volume-imaging PET scanner. Phys. Med. Biol. 39, 631–642 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Farquhar, T.H., Chatziioannou, A., Cherry, S.R.: An evaluation of exact and approximate 3D reconstruction algorithms for a high-resolution, small-animal PET scanner. IEEE Trans. Med. Imaging 17, 1073–1080 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Reader, A.J., Visvikis, D., Erlandsson, K., Ott, R.J., Flower, M.A.: Intercomparison of four reconstruction techniques for positron volume imaging with rotating planar detectors. Phys. Med. Biol. 43, 823–834 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Krzywinski, M., Sossi, V., Ruth, T.J.: Comparison of FORE, OSEM and SAGE algorithms to 3DRP in 3D PET using phantom and human subject data. IEEE Trans. Nucl. Sci. 46(4), 1114–1120 (1999)

    Article  Google Scholar 

  25. Liow, J.S., Zhou, L.: Evaluating performance of reconstruction algorithms for 3D [15O] water PET using subtraction analysis. IEEE Trans. Med. Imaging 19(5), 522–530 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Daube-Witherspoon, M.E., Matej, S., Karp, J.S., Lewitt, R.M.: Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans. Nucl. Sci. 48(1), 24–30 (2001)

    Article  Google Scholar 

  27. Liu, X., Comtat, C., Michel, C., Kinahan, P., Defrise, M., Townsend, D.: Comparison of a 3-D reconstruction With 3D-OSEM and with FORE+OSEM for PET. IEEE Trans. Med. Imaging 20(8), 804–814 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Baghaei, H., et al.: A comparison of four-image reconstruction algorithms for 3D PET imaging of MDAPET camera using phantom data. IEEE Trans. Nucl. Sci. 51(5), 2563–2569 (2004)

    Article  Google Scholar 

  29. Rizzo, G., Castiglioni, I., Russo, G., Gilardi, M.C., Panzacchi, A., Fazio, F.: Data rebinning and reconstruction in 3D PET/CT oncological studies: a Monte Carlo evaluation. IEEE Trans. Nucl. Sci. 53(1), 139–146 (2006)

    Article  Google Scholar 

  30. Johnson, C.A., et al.: Evaluation of 3D reconstruction algorithms for a small animal PET camera (1997)

    Google Scholar 

  31. Wang, C.X., Snyder, W.E., Bilbro, G., Santago, P.: Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. Comput. Biol. Med. 28, 13–25 (1998)

    Article  PubMed  Google Scholar 

  32. Chatziioannou, A., et al.: Comparison of a 3D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans. Med. Imag. 19(5), 507–512 (2000)

    Article  CAS  Google Scholar 

  33. Frese, T., Rouze, N.C., Bouman, C.A., Sauer, K., Hutchins, G.D.: Quantitative comparison of FBP, EM and Bayesian reconstruction algorithms, including the impact of accurate system modeling, for the IndyPET scanner. IEEE Trans. Med. Imaging (2001)

    Google Scholar 

  34. Matej, S., Herman, G.T., Narayan, T.K., Furuie, S.S., Lewitt, R.M., Kinahan, P.E.: Evaluation of task-oriented performance of several fully 3D PET reconstruction algorithms. Phys. Med. Biol. 39, 355–367 (2004)

    Article  Google Scholar 

  35. Pagani, Bettinardi, Gilardi: PARAPET: evaluation of analytic algorithms. Complete deliverable, March 2000

    Google Scholar 

  36. Thielemans, K.: PARAPET: evaluation of iterative algorithms. Complete deliverable, July 2004

    Google Scholar 

  37. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12(3), 600–609 (1993)

    Article  CAS  PubMed  Google Scholar 

  38. Comtat, C., Kinahan, P.E., Defrise, M., Michel, C., Townsend, D.W.: Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans. Nucl. Sci. 45(3), 1083–1089 (1998)

    Article  Google Scholar 

  39. Kontaxakis, G., et al.: Iterative image reconstruction for clinical PET using ordered subsets, median root prior, and a web-based interface. Mol. Imaging Biol. 4(3), 219–231 (2002)

    Article  PubMed  Google Scholar 

  40. Wyrzykowski, M., Siminiak, N., Kaźmierczak, M., Ruchała, M., Czepczyński, R.: Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma. EJNMMI Res. 10(1), 1–8 (2020). https://doi.org/10.1186/s13550-020-00690-6

    Article  Google Scholar 

  41. Mansor, S., Pfaehler, E., Heijel, D., Lodge, M.A., Boellaard, R., Yaqub, M.: Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: an experimental evaluation using an oncology and brain phantom. Med. Phys. 44 (12), December 2017

    Google Scholar 

  42. Qi, W., et al.: A non-local means post-filter with spatially adaptive filtering strength for whole-body PET. In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2015)

    Google Scholar 

  43. Townsend, D.W., Defrise, M.: Image reconstruction methods in positron tomography. Lectures in Academic Training Programme of CERN, Geneva (1993)

    Google Scholar 

  44. Jiang, M., Wang, G.: Convergence studies on iterative algorithms for image reconstruction. IEEE Trans. Med. Imaging 22(5), 569–579 (2003)

    Article  PubMed  Google Scholar 

  45. Byrne, C.: Choosing parameters in block-iterative or ordered subset reconstruction algorithms. IEEE Trans. Image Proc. 14(3), 321–327 (2005)

    Article  Google Scholar 

  46. Archer, G.E.B., Titterington, D.M.: The iterative image space reconstruction algorithm (ISRA) as an alternative to the EM algorithm for solving positive linear inverse problems. Stat. Sin. 5, 77–96 (1995)

    Google Scholar 

  47. Anderson, M.M., Mair, B.A., Rao, M., Wu, C.H.: Weighted least-squares reconstruction methods for positron emission tomography. IEEE Trans. Med. Imaging 16(2), 159–165 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging MI-1(2), October 1982

    Google Scholar 

  49. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  CAS  PubMed  Google Scholar 

  50. Green, P.J.: On use of the EM algorithm for penalized likelihood estimation. J. R. Stat. Soc. Ser. B 52(3), 443–452 (1990)

    Google Scholar 

  51. Alenius, S., Ruotsalainen, U., Astola, J.: Using local median as the location of the prior distribution in iterative emission tomography image reconstruction. In: Proceedings of IEEE Medical Image Conference (1997)

    Google Scholar 

  52. Pepin, C.M., et al.: Properties of LYSO and recent LSO scintillators for phoswich PET detectors. Trans. Nucl. Sci. 51(3), 789–795 (2004)

    Article  CAS  Google Scholar 

  53. Sportelli, G.: A modular data acquisition system for high resolution clinical PET scanners. Ph.D. thesis (2010)

    Google Scholar 

  54. Siddon, R.L.: Fast calculation of the exact radiological path for three-dimensional CT array. Med. Phys. 12, 252–255 (1985)

    Article  CAS  PubMed  Google Scholar 

  55. Rafecas, M., et al.: Use of a Monte Carlo-based probability matrix for 3-D iterative reconstruction of MADPET-II data. IEEE Trans. Nucl. Sci. 51(5), 2597–2605 (2004)

    Article  Google Scholar 

  56. Panin, V.Y., Kehren, F., Rothfuss, H., Hu, D., Michel, C., Casey, M.E.: PET reconstruction with system matrix derived from point source measurements. IEEE Trans. Nucl. Sci. 53(1), 152–159 (2006)

    Article  Google Scholar 

  57. Binderup, T., et al.: Molecular imaging with small animal PET/CT. Curr. Med. Imaging Rev. 7, 234–247 (2011)

    Article  CAS  Google Scholar 

  58. Kuntner, C., Stout, D.: Quantitative preclinical PET imaging: opportunities and challenges. Front. Phys. Review Article, Published: 28 February 2014

    Google Scholar 

  59. Cherry, S.R., Sorenson, J.A., Phelps, M.E.: Physics in Nuclear Medicine, ch. 15. SAUNDERS-Elsevier (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia K. Karali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karali, E.K. (2023). Small Animal PET Imaging: Towards an Imaging Analysis Approach for System Average Performance Conclusion. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics