Skip to main content

Protective Effects of Resveratrol on Brain Edema and Microstructural Changes in Human Brain After Acute Alcohol Intake: Assessment by Diffusion Weighted Kurtosis Imaging

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Abstract

Resveratrol can initiate anti-alcoholic functions in the human body. Magnetic resonance diffusion kurtosis imaging (DKI) can comprehensively evaluate ethanol associated brain changes at different time points. This study aimed at utilizing the DKI technique to evaluate the protective effects of resveratrol on brain. Ten volunteers were recruited into this study. Participants in Group A were orally administered with a high alcoholic dose. Those in Group R only took resveratrol, and each participant in Group AR received resveratrol before taking alcohol with the same dose in Group A. Each group included the same 10 volunteers. Each volunteer was subjected to 3 batches of DKI tests. DKI data and images were obtained before drinking, 1.5 h after drinking and at 2 h after drinking. The data obtained before drinking were set as the control group, and the rest data were compared with it. Both Group A and Group AR showed the decrease of mean diffusion (MD) values in multiple brain regions (Group A, n = 12; Group AR, n = 3), Group A showed increased fractional anisotropy (FA) values (n = 16) and Group AR showed increased mean kurtosis (MK) values (n = 7) in multiple brain regions. The MK values of Group A and FA values of Group AR showed biphasic changes in different brain regions. Comparisons between Group A and Group AR, Group AR showed lower FA values in 9 brain regions. The results implied that alcohol caused less damage to the brains of the AR group. DKI can be used to quantify changes in brain tissue microstructure during acute alcohol exposure. The ability of resveratrol consumption to mitigate fluctuations in DKI parameters associated with acute alcohol intake suggests that resveratrol has a protective effect on the brain in a state of alcohol exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Topiwala, A., Allan, C.L., Valkanova, V., et al.: Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. BMJ (Clin. Res. Ed.) 357, j2353 (2017). https://doi.org/10.1136/bmj.j2353

  2. Geneva: World Health Organization: Global status report on alcohol and health 2018: executive summary. (WHO/ MSD/MSB/18.2). Licence: CC BY-NC-SA 3.0 IGO (2018)

    Google Scholar 

  3. Fritz, M., Klawonn, A.M., Zahr, N.M.: Neuroimaging in alcohol use disorder: from mouse to man. J. Neurosci. Res. 100(5), 1140–1158 (2022). https://doi.org/10.1002/jnr.24423

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, N., Senda, M., Lin, S., et al.: Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Mol. Nutr. Food Res. 55(12), 1791–1797 (2011). https://doi.org/10.1002/mnfr.201100401

    Article  CAS  PubMed  Google Scholar 

  5. Kidani, Y., Bensinger, S.J.: Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol. Rev. 249(1), 72–83 (2012). https://doi.org/10.1111/j.1600-065X.2012.01153.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berger, J., Moller, D.E.: The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002). https://doi.org/10.1146/annurev.med.53.082901.104018

    Article  CAS  PubMed  Google Scholar 

  7. Jonker, J.W., Suh, J.M., Atkins, A.R., et al.: A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485(7398), 391–394 (2012). https://doi.org/10.1038/nature10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, J., Jia, Y., Fu, T., et al.: Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J. Official Publ. Fed. Am. Soc. Exp. Biol. 26(2), 628–638 (2012). https://doi.org/10.1096/fj.11-194019

    Article  CAS  Google Scholar 

  9. Kong, L.M., Zheng, W.B., Lian, G.P., et al.: Acute effects of alcohol on the human brain: diffusion tensor imaging study. AJNR Am. J. Neuroradiol. 33(5), 928–934 (2012). https://doi.org/10.3174/ajnr.A2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, X.R., Zeng, J.Y., Shen, Z.W., et al.: Diffusion kurtosis imaging detects microstructural changes in the brain after acute alcohol intoxication in rats. Biomed. Res. Int. 2017, 4757025 (2017). https://doi.org/10.1155/2017/4757025

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu, H.M.: A study of acute EtOH intoxication on the brain of rat using 7.0T DWI and 1H-MRS. Medical College of Shantou University (2013)

    Google Scholar 

  12. Kong, L., Lian, G., Zheng, W., et al.: Effect of alcohol on diffuse axonal injury in rat brainstem: diffusion tensor imaging and aquaporin-4 expression study. Biomed. Res. Int. 2013, 798261 (2013). https://doi.org/10.1155/2013/798261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamakami, I., Vink, R., Faden, A.I., et al.: Effects of acute ethanol intoxication on experimental brain injury in the rat: neurobehavioral and phosphorus-31 nuclear magnetic resonance spectroscopy studies. J. Neurosurg. 82(5), 813–821 (1995). https://doi.org/10.3171/jns.1995.82.5.0813

    Article  CAS  PubMed  Google Scholar 

  14. Lu, Y., Gao, G.S., Yu, X.J., et al.: Effects of ethanol on Ngb, Hif-1α and Na+, K+ -ATPase activity of brain and mechanism of death. 23(2), 96–99 (2009)

    Google Scholar 

  15. McDonough, K.H., Giaimo, M.E., Miller, H.I., et al.: Low-dose ethanol alters the cardiovascular, metabolic, and respiratory compensation for severe blood loss. J. Trauma 53(3), 541–548 (2002). https://doi.org/10.1097/00005373-200209000-00024

  16. Matés, J.M., Pérez-Gómez, C., Núñez de Castro, I.: Antioxidant enzymes and human diseases. Clin. Biochem. 32(8), 595–603 (1999). https://doi.org/10.1016/s0009-9120(99)00075-2

  17. Yoo, H.Y., Chang, M.S., Rho, H.M.: Induction of the rat Cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid. Gene 234(1), 87–91 (1999). https://doi.org/10.1016/s0378-1119(99)00176-6

    Article  CAS  PubMed  Google Scholar 

  18. Chen, C.C., Yin, S.J.: Alcohol abuse and related factors in Asia. Int. Rev. Psychiatry (Abingdon, England) 20(5), 425–433 (2008). https://doi.org/10.1080/09540260802344075

    Article  Google Scholar 

  19. Karadayian, A.G., Bustamante, J., Czerniczyniec, A., et al.: Alcohol hangover induces mitochondrial dysfunction and free radical production in mouse cerebellum. Neuroscience 304, 47–59 (2015). https://doi.org/10.1016/j.neuroscience.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  20. Koch, O.R., Pani, G., Borrello, S., et al.: Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol. Aspects Med. 25(1–2), 191–198 (2004). https://doi.org/10.1016/j.mam.2004.02.019

    Article  CAS  PubMed  Google Scholar 

  21. Snopek, L., Mlcek, J., Sochorova, L., et al.: Contribution of red wine consumption to human health protection. Molecules (Basel, Switzerland) 23(7) (2018). https://doi.org/10.3390/molecules23071684

  22. Petrella, C., Carito, V., Carere, C., et al.: Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition (Burbank, Los Angeles County, Calif) 79–80, 110783 (2020). https://doi.org/10.1016/j.nut.2020.110783

  23. Van Cauter, S., Veraart, J., Sijbers, J., et al.: Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263(2), 492–501 (2012). https://doi.org/10.1148/radiol.12110927

    Article  PubMed  Google Scholar 

  24. Cernak, I., Vink, R., Zapple, D.N., et al.: The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol. Dis. 17(1), 29–43 (2004). https://doi.org/10.1016/j.nbd.2004.05.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Special Funds of Department of Science and Technology of Guangdong Province (Grant Number: 202055, 202063) and was supported by Joint Research Fund for Enterprise and basic and applied basic research Programs of Guangdong Province of China (Grant No. 2021A1515 220112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, G., Lu, Y., Zheng, H., Kong, L., Zheng, W. (2023). Protective Effects of Resveratrol on Brain Edema and Microstructural Changes in Human Brain After Acute Alcohol Intake: Assessment by Diffusion Weighted Kurtosis Imaging. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics