Skip to main content

Data Integrity for Dynamic Big Data in Cloud Storage: A Comprehensive Review and Critical Issues

  • Conference paper
  • First Online:
Emerging Technologies in Computing (iCETiC 2022)

Abstract

Cloud storage services provide vast storage space to solve the bottleneck of the data generated by different big data applications. However, the nature of big data in terms of its massive volume and rapid velocity, needs to be considered when designing data integrity schemes to provide security assurance for data stored in the cloud. The state of the art of data integrity in the cloud includes two primary schemes: (i) Proof of Retrievability (POR) and (ii) Provable Data Possession. Both techniques are designed to achieve the same goal in ensuring data integrity of outsourced data in cloud storage; However, PoR varies from PDP by error-correcting feature to retrieve the damaged outsourced data. This paper focuses on the proof of data retrievability technique (POR) for dynamic data. Dynamic data is defined as data under different update operations. The paper surveys the state of the art data integrity techniques for cloud storage (CS) and previous work on basic requirements for an effective data integrity technique for big data applications. Methods used to provide dynamic PoR are discussed before summarizing the classification of the POR state-of-the-art. The recently proposed techniques and their limitations are also discussed with issues to consider for future POR scheme design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. State of the Cloud Report | Flexera: State of the Cloud Report (2022). https://www.flexera.com/about-us/press-center/flexera-releases-2021-state-of-the-cloud-report#:~:text=61%20percent%20overall%20plan%20to,a%20centralized%20approach%20to%20cloud. Accessed 9 Mar 2021

  2. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., et al.: Above the clouds: a Berkeley view of cloud computing. Dept. Electrical Eng. Comput. Sci. Univ. California, Berkeley, Rep. UCB/EECS, 28(13) (2009)

    Google Scholar 

  3. Liu, A., Yu, T.: Overview of cloud storage and architecture. Int. J. Sci. Technol. Res. (2018)

    Google Scholar 

  4. Marks EA, Lozano B. Executive’s guide to cloud computing. John Wiley and Sons; 2010

    Google Scholar 

  5. Takabi, H., Joshi, J.B., Ahn, G.-J.: Security and privacy challenges in cloud computing environments. IEEE Secur. Priv. 6, 24–31 (2010)

    Article  Google Scholar 

  6. Sampson, D., Chowdhury, M.M.: The growing security concerns of cloud computing. In: 2021 IEEE International Conference on Electro Information Technology (EIT), pp. 050–5. IEEE (2021)

    Google Scholar 

  7. Tan, C.B., Hijazi, M.H.A., Lim, Y., Gani, A.: VIP2_A survey on proof of retrievability for cloud data integrity and availability: cloud storage state-of-the-art, issues, solutions and future trends. J. Netw. Comput. Appl. 110, 75–86 (2018). https://doi.org/10.1016/j.jnca.2018.03.017

    Article  Google Scholar 

  8. Taneja, D., Tyagi, S.: Information security in cloud computing: a systematic literature review and analysis. Int. J. Sci. Eng. Technol. 6(1), 50–55 (2017)

    Google Scholar 

  9. FIPS P. 199 Standards for security categorization of federal information and information systems. Computer Security Division, NIST (2004)

    Google Scholar 

  10. Stallings, W., Brown, L., Bauer, M.D., Howard, M.: Computer Security: Principles and Practice. Pearson Upper Saddle River, Hoboken (2012)

    Google Scholar 

  11. Sharwood, S.: Salesforce.com crash caused DATA LOSS (2016). https://www.theregister.com/2016/05/13/salesforcecom_crash_caused_data_loss/. Accessed 02 Mar 2021

  12. Chaturvedi, A., Bureau, E.: Instagram data breach trail leads to Chtrbox (2019). Accessed 31 May 2022

    Google Scholar 

  13. EPIC: Equifax Data Breach. https://archive.epic.org/privacy/data-breach/equifax/. Accessed 03 Apr 2022

  14. Peng, S., Zhao, L., Al-Dubai, A.Y., Zomaya, A.Y., Hu, J., Min, G.Y., et al.: Secure lightweight stream data outsourcing for internet of things. IEEE Internet Things J. 8(13), 10815–10829 (2021). https://doi.org/10.1109/jiot.2021.3050732

    Article  Google Scholar 

  15. Odun-Ayo, I., Ajayi, O., Akanle, B., Ahuja ,R.: An overview of data storage in cloud computing. In: International Conference on Next Generation Computing and Information Systems (ICNGCIS). IEEE (2017)

    Google Scholar 

  16. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., et al.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and Communications Security. Alexandria, Virginia, USA, pp. 598–609 ACM (2007)

    Google Scholar 

  17. Juels, A., Kaliski, B.S.: VIP: PORs: Proofs of Retrievability for Large Files, pp. 584–97 (2007)

    Google Scholar 

  18. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_28

    Chapter  Google Scholar 

  19. Shacham, H., Waters, B.: Compact proofs of retrievability. J. Cryptol. 26(3), 442–483 (2012). https://doi.org/10.1007/s00145-012-9129-2

    Article  MATH  Google Scholar 

  20. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MATH  Google Scholar 

  21. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics for storage security in cloud computing. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1_22

    Chapter  Google Scholar 

  22. Wang, B., Li, B., Li, H.: Oruta: privacy-preserving public auditing for shared data in the cloud. IEEE Trans. Cloud Comput. 2(1), 43–56 (2014)

    Article  Google Scholar 

  23. Zhang, X., Xu, C., Zhang, X.: Efficient pairing-free privacy-preserving auditing scheme for cloud storage in distributed sensor networks. Int. J. Distrib. Sens. Netw. 11(7), 593759 (2015)

    Article  Google Scholar 

  24. Shen, J., Shen, J., Chen, X., Huang, X., Susilo, W.: An efficient public auditing protocol with novel dynamic structure for cloud data-pairing based. IEEE Trans. Inf. Forensics Secur. 12(10), 2402–2415 (2017). https://doi.org/10.1109/tifs.2017.2705620

    Article  Google Scholar 

  25. Wang, J., Peng, F., Tian, H., Chen, W., Lu, J.: Public auditing of log integrity for cloud storage systems via blockchain. In: Li, J., Liu, Z., Peng, H. (eds.) SPNCE 2019. LNICSSITE, vol. 284, pp. 378–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21373-2_29

    Chapter  Google Scholar 

  26. Han, J., Li, Y., Chen, W.: VIP$_a lightweight and privacy-preserving public cloud auditing scheme without bilinear pairings in smart cities. Comput. Stand. Interfaces 62, 84–97 (2019). https://doi.org/10.1016/j.csi.2018.08.004

    Article  Google Scholar 

  27. Shao, B., Ji, Y.: Efficient TPA-based auditing scheme for secure cloud storage. Clust. Comput. 24(3), 1989–2000 (2021). https://doi.org/10.1007/s10586-021-03239-x

    Article  Google Scholar 

  28. Chen, D., Yuan, H., Hu, S., Wang, Q., Wang, C.: BOSSA: a decentralized system for proofs of data retrievability and replication. IEEE Trans. Parallel Distrib. Syst. 32(4), 786–798 (2020)

    Article  Google Scholar 

  29. ALmarwani, R., Zhang, N., Garside, J.: An effective, secure and efficient tagging method for integrity protection of outsourced data in a public cloud storage. Plos one 15(11), e0241236 (2020)

    Google Scholar 

  30. Li, C., Wang, P., Sun, C., Zhou, K., Huang, P.: $WiBPA: an efficient data integrity auditing scheme without bilinear pairings. Comput. Mater. Continua. 58(2), 319–333 (2019)

    Article  Google Scholar 

  31. Liu, C., Chen, J., Yang, L.T., Zhang, X., Yang, C., Ranjan, R., et al.: Authorized public auditing of dynamic big data storage on cloud with efficient verifiable fine-grained updates. IEEE Trans. Parallel Distrib. Syst. 25(9), 2234–2244 (2014). https://doi.org/10.1109/tpds.2013.191

    Article  Google Scholar 

  32. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious RAM. J. Cryptol. 30(1), 22–57 (2015). https://doi.org/10.1007/s00145-015-9216-2

    Article  MATH  Google Scholar 

  33. Ren, Z., Wang, L., Wang, Q., Xu, M.: Dynamic proofs of retrievability for coded cloud storage systems. IEEE Trans. Serv. Comput. 11(4), 685–698 (2018). https://doi.org/10.1109/tsc.2015.2481880

    Article  Google Scholar 

  34. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. ACM Trans. Inf. Syst. Secur. (TISSEC). 17(4), 15 (2015)

    Article  Google Scholar 

  35. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220-232 (2012)

    Google Scholar 

  36. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  37. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–676 (1990)

    Article  Google Scholar 

  38. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM (JACM). 43(3), 431–473 (1996)

    Article  MATH  Google Scholar 

  39. Ateniese, G., Pietro, R., Mancini, L., Gene, T.: Scalable and efficient provable data possession. In: Proceedings of the 4th International Conference on Security and Privacy in Communication Networks (2008)

    Google Scholar 

  40. Gan, Q., Wang, X., Fang, X.: VIP22/6_Efficient and secure auditing scheme for outsourced big data with dynamicity in cloud- Algebraic signature. Sci. Chin. Inf. Sci. 61(12), 1–15 (2018)

    Article  Google Scholar 

  41. Tian, H., Chen, Y., Chang, C.-C., Jiang, H., Huang, Y., Chen, Y., et al.: Dynamic-hash-table based public auditing for secure cloud storage. IEEE Trans. Serv. Comput. 10(5), 701–714 (2015)

    Article  Google Scholar 

  42. Jin, H., Jiang, H., Zhou, K.: Dynamic and public auditing with fair arbitration for cloud data. IEEE Trans. Cloud Comput. 6(3), 680–693 (2018). https://doi.org/10.1109/TCC.2016.2525998

    Article  Google Scholar 

  43. Erway, C.C.: Dynamic provable data possession_important. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, Ccs 2009 (2009)

    Google Scholar 

  44. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L., et al.: Remote data checking using provable data possession. ACM Trans. Inf. Syst. Secur. 14(1), 1–34 (2011)

    Article  Google Scholar 

  45. Zhen, M., Yian, Z., Shigang, C.: A dynamic Proof of Retrievability (PoR) scheme with O(logn) complexity. In: 2012 IEEE International Conference on Communications (ICC), pp. 912–916 (2012)

    Google Scholar 

  46. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 325–336. ACM (2013)

    Google Scholar 

  47. Chen, J., Peng, Y., Du, R., Yuan, Q., Zheng, M.: Regenerating-codes-based efficient remote data checking and repairing in cloud storage. In: Proceedings - 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, pp. 143–150. TrustCom (2015)

    Google Scholar 

  48. Sengupta, B., Ruj, S.: Efficient proofs of retrievability with public verifiability for dynamic cloud storage. IEEE Trans. Cloud Comput. 8(1), 138–151 (2020). https://doi.org/10.1109/tcc.2017.2767584

    Article  Google Scholar 

  49. Razaque, A., Rizvi, S.S.: Privacy preserving model: a new scheme for auditing cloud stakeholders. J. Cloud Comput. 6(1), 1–17 (2017). https://doi.org/10.1186/s13677-017-0076-1

    Article  Google Scholar 

  50. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: Proceedings of the First ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, pp. 237–48. ACM (2011)

    Google Scholar 

  51. Wang, Q., Cong, W., Ren, K., Lou, W., Jin, L.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans.Parallel and Distrib. Syst. 22(5), 847–859 (2011)

    Article  Google Scholar 

  52. Li, J., Tan, X., Chen, X., Wong, D.S., Xhafa, F.: OPoR: Enabling Proof of Retrievability in Cloud Computing with Resource-Constrained Devices. IEEE Trans. Cloud Comput. 2(3), 195–205 (2015)

    Article  Google Scholar 

  53. Fu, A., Li, Y., Yu, S., Yu, Y., Zhang, G.: DIPOR: an IDA-based dynamic proof of retrievability scheme for cloud storage systems. J. Netw. Comput. Appl. 104, 97–106 (2018)

    Article  Google Scholar 

  54. Zhu, Y., Ahn, G.J., Hu, H., Yau, S.S., An, H.G., Hu, C.J.: Dynamic audit services for outsourced storages in clouds. IEEE Trans. Serv. Comput. 6(2), 227–238 (2013). https://doi.org/10.1109/TSC.2011.51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamiel H. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, S.H., Sirat, M.M., Elbakri, W.M.M. (2023). Data Integrity for Dynamic Big Data in Cloud Storage: A Comprehensive Review and Critical Issues. In: Miraz, M.H., Southall, G., Ali, M., Ware, A. (eds) Emerging Technologies in Computing. iCETiC 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 463. Springer, Cham. https://doi.org/10.1007/978-3-031-25161-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25161-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25160-3

  • Online ISBN: 978-3-031-25161-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics