Skip to main content

RVENet: A Large Echocardiographic Dataset for the Deep Learning-Based Assessment of Right Ventricular Function

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Right ventricular ejection fraction (RVEF) is an important indicator of cardiac function and has a well-established prognostic value. In scenarios where imaging modalities capable of directly assessing RVEF are unavailable, deep learning (DL) might be used to infer RVEF from alternative modalities, such as two-dimensional echocardiography. For the implementation of such solutions, publicly available, dedicated datasets are pivotal.

Accordingly, we introduce the RVENet dataset comprising 3,583 two-dimensional apical four-chamber view echocardiographic videos of 831 patients. The ground truth RVEF values were calculated by medical experts using three-dimensional echocardiography. We also implemented benchmark DL models for two tasks: (i) the classification of RVEF as normal or reduced and (ii) the prediction of the exact RVEF values. In the classification task, the DL models were able to surpass the medical experts’ performance. We hope that the publication of this dataset may foster innovations targeting the accurate diagnosis of RV dysfunction.

B. Magyar and M. Tokodi—These authors contributed equally to this work and are joint first authors.

B. Merkely, A. Kovács and A. Horváth—These authors contributed equally to this work and are joint last authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akkus, Z., et al.: Artificial intelligence (AI)-empowered echocardiography interpretation: A state-of-the-art review. J. Clin. Med. 10(7), 1391 (2021)

    Article  Google Scholar 

  2. Alsharqi, M., Woodward, W., Mumith, J., Markham, D., Upton, R., Leeson, P.: Artificial intelligence and echocardiography. Echo Res. Pract. 5(4), R115–R125 (2018)

    Article  Google Scholar 

  3. Bernard, O., et al.: Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans. Med. Imaging 35(4), 967–977 (2015)

    Article  Google Scholar 

  4. Chen, Y., Zhang, X., Haggerty, C.M., Stough, J.V.: Assessing the generalizability of temporally coherent echocardiography video segmentation. In: Medical Imaging 2021: Image Processing, vol. 11596, pp. 463–469, SPIE (2021)

    Google Scholar 

  5. Folland, E., Parisi, A., Moynihan, P., Jones, D.R., Feldman, C.L., Tow, D.: Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation 60(4), 760–766 (1979)

    Google Scholar 

  6. Lang, R.M., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart Jo. Cardiovasc. Imaging 16(3), 233–271 (2015)

    Article  Google Scholar 

  7. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  8. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient cnn architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  9. Madani, A., Ong, J.R., Tibrewal, A., Mofrad, M.R.: Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit. Med. 1(1), 1–11 (2018)

    Article  Google Scholar 

  10. Muraru, D., et al.: Development and prognostic validation of partition values to grade right ventricular dysfunction severity using 3D echocardiography. Eur. Heart J. Cardiovasc. Imaging 21(1), 10–21 (2020)

    Article  MathSciNet  Google Scholar 

  11. Muraru, D., et al.: New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur. J. Echocardiogr. 17(11), 1279–1289 (2015)

    Google Scholar 

  12. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Google Scholar 

  13. Ouyang, D., et al.: Echonet-dynamic: a large new cardiac motion video data resource for medical machine learning. In: NeurIPS ML4H Workshop: Vancouver, BC, Canada (2019)

    Google Scholar 

  14. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  15. Porter, T.R., et al.: Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American society of echocardiography. J. Am. Soc. Echocardiogr. 28(1), 40–56 (2015)

    Article  Google Scholar 

  16. Sayour, A.A., Tokodi, M., Celeng, C., Takx, R.A.P., Fábián, A., Lakatos, B.K. et al.: Association of right ventricular functional parameters with adverse cardiopulmonary outcomes - a meta-analysis. J. Am. Soc. Echocardiogr. https://doi.org/10.1016/j.echo.2023.01.018. in press

  17. Sengupta, P.P., et al.: Proposed requirements for cardiovascular imaging-related machine learning evaluation (prime): a checklist. JACC: Cardiovasc. Imaging 13(9), 2017–2035 (2020)

    Google Scholar 

  18. Shad, R., et al.: Predicting post-operative right ventricular failure using video-based deep learning. Nat. Commun. 12(1), 1–8 (2021)

    Article  MathSciNet  Google Scholar 

  19. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  20. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  21. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  22. Zamzmi, G., Hsu, L.Y., Li, W., Sachdev, V., Antani, S.: Harnessing machine intelligence in automatic echocardiogram analysis: current status, limitations, and future directions. IEEE Rev. Biomed. Eng. (2020)

    Google Scholar 

  23. Zhang, J., et al.: Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy. Circulation 138(16), 1623–1635 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This project was also supported by a grant from the National Research, Development and Innovation Office (NKFIH) of Hungary (FK 142573 to Attila Kovács).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Magyar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 271 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magyar, B. et al. (2023). RVENet: A Large Echocardiographic Dataset for the Deep Learning-Based Assessment of Right Ventricular Function. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics