Skip to main content

Beyond Local Processing: Adapting CNNs for CT Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Convolutional neural networks (CNNs) are well suited for image restoration tasks, like super resolution, deblurring, and denoising, in which the information required for restoring each pixel is mostly concentrated in a small neighborhood around it in the degraded image. However, they are less natural for highly non-local reconstruction problems, such as computed tomography (CT). To date, this incompatibility has been partially circumvented by using CNNs with very large receptive fields. Here, we propose an alternative approach, which relies on the rearrangement of the CT projection measurements along the CNN’s 3rd (channels’) dimension. This leads to a more local inverse problem, which is suitable for CNNs. We demonstrate our approach on sparse-view and limited-view CT, and show that it significantly improves reconstruction accuracy for any given network model. This allows achieving the same level of accuracy with significantly smaller models, and thus induces shorter training and inference times.

Y. Bahat—Part of the work was done while the author was affiliated with the Technion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, A., Kak, A.: Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrasonic Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  2. Cai, J.F., Jia, X., Gao, H., Jiang, S.B., Shen, Z., Zhao, H.: Cine cone beam ct reconstruction using low-rank matrix factorization: algorithm and a proof-of-princple study (2012)

    Google Scholar 

  3. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  4. Chen, Y.: Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imaging 33(12), 2271–2292 (2014)

    Article  Google Scholar 

  5. Dreike, P., Boyd, D.P.: Convolution reconstruction of fan beam projections. Comput. Graph. Image Process. 5(4), 459–469 (1976)

    Article  Google Scholar 

  6. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A-optics Image Sci. Vision 1, 612–619 (1984)

    Article  Google Scholar 

  7. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  8. He, J., Wang, Y., Ma, J.: Radon inversion via deep learning. IEEE Trans. Med. Imaging 39(6), 2076–2087 (2020)

    Article  Google Scholar 

  9. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017)

    Article  Google Scholar 

  11. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2018)

    Article  Google Scholar 

  12. Laine, S., Lehtinen, J., Aila, T.: Self-supervised deep image denoising. CoRR abs/1901.10277 (2019)

    Google Scholar 

  13. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. CoRR abs/1609.04802 (2016)

    Google Scholar 

  14. Lee, H., Lee, J., Kim, H., Cho, B., Cho, S.: Deep-neural-network-based sinogram synthesis for sparse-view CT image reconstruction. IEEE Trans. Radiat. Plasma Med. Sci. 3(2), 109–119 (2019)

    Article  Google Scholar 

  15. Li, S., Cao, Q., Chen, Y., Hu, Y., Luo, L., Toumoulin, C.: Dictionary learning based sinogram inpainting for ct sparse reconstruction. Optik - Int. J. Light Electron Optics 125, 2862–2867 (2014)

    Google Scholar 

  16. Mao, X., Shen, C., Yang, Y.: Image denoising using very deep fully convolutional encoder-decoder networks with symmetric skip connections. CoRR abs/1603.09056 (2016)

    Google Scholar 

  17. Radon, J.: On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5(4), 170–176 (1986)

    Article  Google Scholar 

  18. Ramachandran, G.N., Lakshminarayanan, A.V.: Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of fourier transforms. Proc. Natl. Acad. Sci. USA 68(9), 2236–40 (1971)

    Article  MathSciNet  Google Scholar 

  19. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  20. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53, 4777 (2008)

    Article  Google Scholar 

  21. Tao, X., Gao, H., Wang, Y., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. CoRR abs/1802.01770 (2018)

    Google Scholar 

  22. Wang, W., et al.: An end-to-end deep network for reconstructing CT images directly from sparse sinograms. IEEE Trans. Comput. Imaging 6, 1548–1560 (2020)

    Article  MathSciNet  Google Scholar 

  23. Wecksung, G.W., Kruger, R.P., Morris, R.A.: Fan-to parallel-beam conversion in cat by rubber sheet transformation. Appl. Digital Image Process. III(0207), 76–83 (1979)

    Google Scholar 

  24. Xie, Q., et al.: Robust low-dose CT sinogram preprocessing via exploiting noise-generating mechanism. IEEE Trans. Med. Imaging 36(12), 2487–2498 (2017)

    Article  Google Scholar 

  25. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. Adv. Neural Inf. Process. Syst. 27, 1790–1798 (2014)

    Google Scholar 

  26. Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., Wang, G.: Low-dose x-ray ct reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31, 1682–1697 (2012)

    Article  Google Scholar 

  27. Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations. CoRR abs/1710.01766 (2017)

    Google Scholar 

  28. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  29. Yu, W., Wang, C., Nie, X., Huang, M., Wu, L.: Image reconstruction for few-view computed tomography based on l0 sparse regularization. Procedia Comput. Sci. 107, 808–813 (2017)

    Article  Google Scholar 

  30. Zhang, H., Sindagi, V., Patel, V.M.: Joint transmission map estimation and dehazing using deep networks. IEEE Trans. Circ. Syst. Video Technol. 30(7), 1975–1986 (2019)

    Google Scholar 

  31. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Y., Zhang, W.H., Chen, H., Yang, M., Li, T.Y., Zhou, J.L.: Few-view image reconstruction combining total variation and a high-order norm. Int. J. Imaging Syst. Technol. 23, 249–255 (2013)

    Article  Google Scholar 

  33. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. CoRR abs/1807.02758 (2018)

    Google Scholar 

  34. Zhu, Y., Zhao, M., Zhao, Y., Li, H., Zhang, P.: Noise reduction with low dose CT data based on a modified ROF model. Opt. Express 20(16), 17987–18004 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This research was partially supported by the Ollendorff Miverva Center at the Viterbi Faculty of Electrical and Computer Engineering, Technion. Yuval Bahat is funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassel Hamoud .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2304 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamoud, B., Bahat, Y., Michaeli, T. (2023). Beyond Local Processing: Adapting CNNs for CT Reconstruction. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics