Skip to main content

Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations

  • Conference paper
  • First Online:
Medical Applications with Disentanglements (MAD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13823))

Included in the following conference series:

  • 414 Accesses

Abstract

The lack of interpretability of Deep Learning models hinders their deployment in clinical contexts. Case-based explanations can be used to justify these models’ decisions and improve their trustworthiness. However, providing medical cases as explanations may threaten the privacy of patients. We propose a generative adversarial network to disentangle identity and medical features from images. Using this network, we can alter the identity of an image to anonymize it while preserving relevant explanatory features. As a proof of concept, we apply the proposed model to biometric and medical datasets, demonstrating its capacity to anonymize medical images while preserving explanatory evidence and a reasonable level of intelligibility. Finally, we demonstrate that the model is inherently capable of generating counterfactual explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, M., et al.: iNNvestigate neural networks! J. Mach. Learn. Res. 20(93), 1–8 (2019)

    Google Scholar 

  2. Bromley, J., et al.: Signature verification using a “siamese’’ time delay neural network. Int. J. Pattern Recognit. Artif. Intell. 7, 25 (1993). https://doi.org/10.1142/S0218001493000339

    Article  Google Scholar 

  3. Chen, J., Konrad, J., Ishwar, P.: VGAN-based image representation learning for privacy-preserving facial expression recognition. In: CVPR, CV-COPS (2018)

    Google Scholar 

  4. Cho, D., Lee, J.H., Suh, I.H.: CLEANIR: controllable attribute-preserving natural identity remover. Appl. Sci. 10(3), 1120 (2020)

    Article  Google Scholar 

  5. DeGrave, A.J., Janizek, J.D., Lee, S.: AI for radiographic COVID-19 detection selects shortcuts over signal. Nat. Mach. Intell. 3(7), 610–619 (2021)

    Article  Google Scholar 

  6. Ghimire, S., Kashyap, S., Wu, J.T., Karargyris, A., Moradi, M.: Learning invariant feature representation to improve generalization across chest x-ray datasets. In: Machine Learning in Medical Imaging, pp. 644–653 (2020)

    Google Scholar 

  7. Gong, M., Liu, J., Li, H., Xie, Y., Tang, Z.: Disentangled representation learning for multiple attributes preserving face deidentification. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2020). https://doi.org/10.1109/TNNLS.2020.3027617

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  9. Gross, R., Airoldi, E., Malin, B., Sweeney, L.: Integrating utility into face de-identification. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 227–242. Springer, Heidelberg (2006). https://doi.org/10.1007/11767831_15

    Chapter  Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: NIPS 2017, pp. 5769–5779 (2017)

    Google Scholar 

  11. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006). https://doi.org/10.1109/CVPR.2006.100

  12. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison (2019)

    Google Scholar 

  13. Irvin, J., et al.: Chexpert: a large chest X-ray dataset and competition (2019). https://stanfordmlgroup.github.io/competitions/chexpert/. Accessed 21 Feb 2022

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2013)

    Google Scholar 

  15. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  16. Mahmood, U., et al.: Detecting spurious correlations with sanity tests for artificial intelligence guided radiology systems. Front. Digit. Health 3, 85 (2021)

    Article  Google Scholar 

  17. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recog. 65, 211–222 (2017)

    Article  Google Scholar 

  18. Montenegro, H., Silva, W., Cardoso, J.S.: Privacy-preserving generative adversarial network for case-based explainability in medical image analysis. IEEE Access 9, 148037–148047 (2021)

    Article  Google Scholar 

  19. Montenegro, H., Silva, W., Cardoso, J.S.: Towards privacy-preserving explanations in medical image analysis. In: IMLH Workshop, at ICML 2021 (2021)

    Google Scholar 

  20. Montenegro, H., Silva, W., Gaudio, A., Fredrikson, M., Smailagic, A., Cardoso, J.S.: Privacy-preserving case-based explanations: enabling visual interpretability by protecting privacy. IEEE Access 10, 28333–28347 (2022). https://doi.org/10.1109/ACCESS.2022.3157589

    Article  Google Scholar 

  21. Oleszkiewicz, W., Kairouz, P., Piczak, K., Rajagopal, R., Trzciński, T.: Siamese generative adversarial privatizer for biometric data. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 482–497. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_31

    Chapter  Google Scholar 

  22. Schölkopf, B.: Causality for machine learning. arXiv preprint arXiv:1911.10500 (2019)

  23. Schölkopf, B., et al.: Towards causal representation learning (2021). https://doi.org/10.48550/ARXIV.2102.11107. https://arxiv.org/abs/2102.11107

  24. Trokielewicz, M., Czajka, A., Maciejewicz, P.: Assessment of iris recognition reliability for eyes affected by ocular pathologies. In: BTAS Conference, pp. 1–6 (2015)

    Google Scholar 

  25. Trokielewicz, M., Czajka, A., Maciejewicz, P.: Biometric databases (2015). http://zbum.ia.pw.edu.pl/EN/node/46. Accessed 18 Oct 2021

  26. Trokielewicz, M., Czajka, A., Maciejewicz, P.: Implications of ocular pathologies for iris recognition reliability. Image Vis. Comput. 58, 158–167 (2017)

    Article  Google Scholar 

  27. Wu, Y., Yang, F., Xu, Y., Ling, H.: Privacy-protective-GAN for privacy preserving face de-identification. J. Comput. Sci. Technol. 34(1), 47–60 (2019). https://doi.org/10.1007/s11390-019-1898-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Project TAMI - Transparent Artificial Medical Intelligence (NORTE-01-0247-FEDER-045905) financed by ERDF - European Regional Fund through the North Portugal Regional Operational Program - NORTE 2020 and by the Portuguese Foundation for Science and Technology - FCT under the CMU - Portugal International Partnership, and also by the Portuguese Foundation for Science and Technology - FCT within PhD grant number SFRH/BD/139468/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Montenegro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montenegro, H., Silva, W., Cardoso, J.S. (2023). Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations. In: Fragemann, J., Li, J., Liu, X., Tsaftaris, S.A., Egger, J., Kleesiek, J. (eds) Medical Applications with Disentanglements. MAD 2022. Lecture Notes in Computer Science, vol 13823. Springer, Cham. https://doi.org/10.1007/978-3-031-25046-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25046-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25045-3

  • Online ISBN: 978-3-031-25046-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics