Skip to main content

Experimental Study of a Flat Solar Collector with Thermal Energy Storage, Applying Improvements Based on Bibliometric Review and CAD Simulation

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2022)

Abstract

The research shows the development process of a 3 m2 flat solar collector, composed of three modules of 1 m2 each, with labyrinth trap geometry, turbulence ridges and thermal energy storage tanks, the latter using different types of phase change materials (PCM), specifically two types of paraffins with melting points in the range of 48 to 58 ℃. Additionally, one of its modules filled with motor oil.

During the first phase, a bibliometric exploration methodology is carried out with VOSviewer Software, identifying prominent technologies in the subject, which allows the design and simulation of a prototype using CAD Software. Subsequently, when implementing it, an analysis of the behavior of the vacuum collector with respect to the use of thermal energy storage is carried out, identifying the advantages in the use of PCM. Among the results, a working power close to 450 W and an approximate efficiency of 25% stand out, contrasting with the simulation, the importance of PCMs in increasing the efficiency of these devices used in different applications is concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fudholi, A., Sopian, K., Ruslan, M.H., Alghoul, M.A., Sulaiman, M.Y.: Review of solar dryers for agricultural and marine products. Renew. Sustain. Energy Rev. 14(1), 1–30 (2010). https://doi.org/10.1016/j.rser.2009.07.032

    Article  Google Scholar 

  2. El-Sebaii, A.A., Shalaby, S.M.: Solar drying of agricultural products: a review. Renew. Sustain. Energy Rev. 16(1), 37–43 (2012). https://doi.org/10.1016/j.rser.2011.07.134

    Article  Google Scholar 

  3. Saxena, A.V., El-Sebaii, A.A.: A thermodynamic review of solar air heaters. Renew. Sustain. Energy Rev. 43, 863–890 (2015). https://doi.org/10.1016/j.rser.2014.11.059

    Article  Google Scholar 

  4. Tomar, V., Tiwari, G.N., Norton, B.: Solar dryers for tropical food preservation: thermophysics of crops, systems and components. Sol. Energy 154, 2–13 (2017). https://doi.org/10.1016/j.solener.2017.05.066

    Article  Google Scholar 

  5. Rodriguez, C.L.S., Correa-Quintana, E.A., Tarazona-Romero, B.E., Rincón-Quintero, A.D., Maradey-Lazaro, J.G.: Characterization of mechanical vibrations in a metal structure using the transform Cepstrum. Period. Eng. Nat. Sci. (PEN) 9(4), 767 (2021). https://doi.org/10.21533/pen.v9i4.1994

    Article  Google Scholar 

  6. Cárdenas, C., Sandoval, C., Rincón, A., Galván, D., Téllez, H.: Data collector design for vibration analysis by raspberry pi 3B embedded system means for industrial applications. J. Phys.: Conf. Ser. 2224(1), 012032 (2022). https://doi.org/10.1088/1742-6596/2224/1/012032

    Article  Google Scholar 

  7. Mendoza-Calderón, K.D., Jaimes, J.A.M., Maradey-Lazaro, J.G., Rincón-Quintero, A.D., Cardenas-Arias, C.G.: Design of an automatic palletizer. J. Phys.: Conf. Ser. 2224(1), 012095 (2022). https://doi.org/10.1088/1742-6596/2224/1/012095

    Article  Google Scholar 

  8. Kalogirou, S.A., Karellas, S., Braimakis, K., Stanciu, C., Badescu, V.: Exergy analysis of solar thermal collectors and processes. Prog. Energy Combust. Sci. 56, 106–137 (2016). https://doi.org/10.1016/j.pecs.2016.05.002

    Article  Google Scholar 

  9. Garrido-Silva, G., Maradey-Lazaro, J.G., Rincón-Quintero, A.D., Lengerke-Pérez, O., Sandoval-Rodriguez, C.L., Cardenas-Arias, C.G.: Estimation of the energy consumption of an electric utility vehicle: a case study. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds.) CIT 2020. LNEE, vol. 763, pp. 257–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72212-8_19

    Chapter  Google Scholar 

  10. Rincón-Quintero, A.D., Meneses-Jacomé, A., Del Portillo-Valdés, L. A.: Obtención de un modelo termoplástico, aprovechando la ceniza de la biomasa proveniente del despulpado del cacao y el reciclaje de PET, mediante un horno compresor automatizado con Software LabView y Hardware Arduino. In: Tecnologías Útiles para la Sustentabilidad Energética para Beneficio de la Sociedad, pp. 229–234 (2019)

    Google Scholar 

  11. Sansaniwal, S.K., Sharma, V., Mathur, J.: Energy and exergy analyses of various typical solar energy applications: a comprehensive review. Renew. Sustain. Energy Rev. 82, 1576–1601 (2018). https://doi.org/10.1016/j.rser.2017.07.003

    Article  Google Scholar 

  12. Fudholi, A., Sopian, K.: A review of solar air flat plate collector for drying application. Renew. Sustain. Energy Rev. 102, 333–345 (2019). https://doi.org/10.1016/j.rser.2018.12.032

    Article  Google Scholar 

  13. Lingayat, A., Balijepalli, R., Chandramohan, V.P.: Applications of solar energy based drying technologies in various industries – a review. Sol. Energy 229, 52–68 (2021). https://doi.org/10.1016/j.solener.2021.05.058

    Article  Google Scholar 

  14. Kamarulzaman, A., Hasanuzzaman, M., Rahim, N.A.: Global advancement of solar drying technologies and its future prospects: a review. Sol. Energy 221, 559–582 (2021). https://doi.org/10.1016/j.solener.2021.04.056

    Article  Google Scholar 

  15. Gorjian, S., et al.: Recent advancements in technical design and thermal performance enhancement of solar greenhouse dryers. Sustain. 13(13), 1–32 (2021). https://doi.org/10.3390/su13137025

    Article  Google Scholar 

  16. Rincón-Quintero, A.D., Lengerke-Pérez, O., Maradey-Lazaro, J.G., Garrido-Silva, G., Sandoval-Rodriguez, C.L., Osorio-Lizarazo, J.A.: Determination of heat transfer coefficients in natural and forced convection for different geometric configurations, using a prototype controlled by labview software and arduino hardware. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds.) CIT 2020. LNEE, vol. 762, pp. 223–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72208-1_17

    Chapter  Google Scholar 

  17. Ahmadi, A., et al.: Energy, exergy, and techno-economic performance analyses of solar dryers for agro products: a comprehensive review. Sol. Energy 228, 349–373 (2021). https://doi.org/10.1016/j.solener.2021.09.060

    Article  Google Scholar 

  18. Bhardwaj, A.K., Kumar, R., Kumar, S., Goel, B., Chauhan, R.: Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM. Sustain. Energy Technol. Assess. 45, 101119 (2021). https://doi.org/10.1016/j.seta.2021.101119

    Article  Google Scholar 

  19. Cetina-Quiñones, A.J., López López, J., Ricalde-Cab, L., Amina El Mekaoui, L., San-Pedro, A. Bassam.: Experimental evaluation of an indirect type solar dryer for agricultural use in rural communities: relative humidity comparative study under winter season in tropical climate with sensible heat storage material. Solar Energy 224, 58–75 (2021). https://doi.org/10.1016/j.solener.2021.05.040

    Article  Google Scholar 

  20. Srinivasan, G., Rabha, D.K., Muthukumar, P.: A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products. Sol. Energy 229, 22–38 (2021). https://doi.org/10.1016/j.solener.2021.07.075

    Article  Google Scholar 

  21. Madhankumar, S., Viswanathan, K., Wu, W.: Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material. Renew. Energy 176, 280–294 (2021). https://doi.org/10.1016/j.renene.2021.05.085

    Article  Google Scholar 

  22. Rincón-Quintero, A.D., Portillo-Valdés, L.A., Meneses-Jácome, A., Sandoval-Rodríguez, C.L., Rondón-Romero, W.L., Ascanio-Villabona, J.G.: Trends in technological advances in food dehydration, identifying the potential extrapolated to cocoa drying: a bibliometric study. In: Tobar, Miguel Botto, Cruz, Henry, Cadena, Angela Díaz. (eds.) CIT 2020. LNEE, vol. 763, pp. 167–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-72212-8_13

    Chapter  Google Scholar 

  23. Mohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K.S., Moses, J.A., Anandharamakrishnan, C.: Solar dryers for food applications: concepts, designs, and recent advances. Sol. Energy 208, 321–344 (2020). https://doi.org/10.1016/j.solener.2020.07.098

    Article  Google Scholar 

  24. Romero, B.E.T., Celador, A.C., Rodriguez, C.L.S., Villabona, J.G.A., Quintero, A.D.R.: Design and construction of a solar tracking system for linear fresnel concentrator. Period. Eng. Nat. Sci. 9(4), 778–794 (2021). https://doi.org/10.21533/pen.v9i4.1988

    Article  Google Scholar 

  25. Sandali, M., Boubekri, A., Mennouche, D.: Improvement of the thermal performance of solar drying systems using different techniques: a review. J. Solar Energy Eng. 141(5), 050802 (2019). https://doi.org/10.1115/1.4043613

    Article  Google Scholar 

  26. Kabeel, A.E., Hamed, M.H., Omara, Z.M., Kandeal, A.W.: Solar air heaters: design configurations, improvement methods and applications – a detailed review. Renew. Sustain. Energy Rev. 70, 1189–1206 (2017). https://doi.org/10.1016/j.rser.2016.12.021

    Article  Google Scholar 

  27. Lázaro, J.G.M., Rincón-Quintero, A.D., Sandoval-Rodriguez, C.L., Lengerke-Perez, O., Castellanos-Hernández, J.F.: Design and set up of a pulverized panela machine. Period. Eng. Nat. Sci. (PEN) 9(4), 812 (2021). https://doi.org/10.21533/pen.v9i4.1989

    Article  Google Scholar 

  28. Baniasadi, E., Ranjbar, S., Boostanipour, O.: Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage. Renew. Energy 112, 143–150 (2017). https://doi.org/10.1016/j.renene.2017.05.043

    Article  Google Scholar 

  29. Kareem, M.W., Gilani, S.I., Habib, K., Irshad, K., Saha, B.B.: Performance analysis of a multi-pass solar thermal collector system under transient state assisted by porous media. Sol. Energy 158, 782–791 (2017). https://doi.org/10.1016/j.solener.2017.10.016

    Article  Google Scholar 

  30. Tiwari, Sumit, Sanjay Agrawal, G.N., Agrawal, S.: PVT air collector integrated greenhouse dryers. Renew. Sustain. Energy Reviews 90, 142–159 (2018). https://doi.org/10.1016/j.rser.2018.03.043

    Article  Google Scholar 

  31. Chaouch, W.B., Khellaf, A., Mediani, A., Slimani, M.E.A., Loumani, A., Hamid, A.: Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment. Sol. Energy 174, 328–341 (2018). https://doi.org/10.1016/j.solener.2018.09.037

    Article  Google Scholar 

  32. Bhardwaj, A.K., Kumar, R., Chauhan, R.: Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Sol. Energy 177, 395–407 (2019). https://doi.org/10.1016/j.solener.2018.11.007

    Article  Google Scholar 

  33. Ortiz-Rodríguez, N.M., García-Valladares, O., Pilatowsky-Figueroa, I., Menchaca-Valdez, A.C.: Solar-LP gas hybrid plant for dehydration of food. Appl. Therm. Eng. 177, 115496 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115496

    Article  Google Scholar 

  34. Pankaew, P., Aumporn, O., Janjai, S., Pattarapanitchai, S., Sangsan, M., Bala, B.K.: Performance of a large-scale greenhouse solar dryer integrated with phase change material thermal storage system for drying of chili. Int. J. Green Energy 17(11), 632–643 (2020). https://doi.org/10.1080/15435075.2020.1779074

    Article  Google Scholar 

  35. Kamfa, I., Fluch, J., Bartali, R., Baker, D.: Solar-thermal driven drying technologies for large-scale industrial applications: state of the art, gaps, and opportunities. Int. J. Energy Res. 44(13), 9864–9888 (2020). https://doi.org/10.1002/er.5622

    Article  Google Scholar 

  36. Rincón-Quintero, A.D., et al.: Manufacture of hybrid pieces using recycled R-PET, polypropylene PP and cocoa pod husks ash CPHA, by pneumatic injection controlled with LabVIEW software and arduino hardware. IOP Conf. Ser. Mater. Sci. Eng. 844(1), 1–12 (2020). https://doi.org/10.1088/1757-899X/844/1/012054

    Article  Google Scholar 

  37. Kahwaji, S., Johnson, M.B., Kheirabadi, A.C., Groulx, D., White, M.A.: A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy 162, 1169–1182 (2018). https://doi.org/10.1016/j.energy.2018.08.068

    Article  Google Scholar 

  38. Bellos, E., Korres, D., Tzivanidis, C., Antonopoulos, K.A.: Design, simulation and optimization of a compound parabolic collector. Sustain. Energy Technol. Assess. 16, 53–63 (2016). https://doi.org/10.1016/j.seta.2016.04.005

    Article  Google Scholar 

  39. Iranmanesh, M., Akhijahani, H.S., Jahromi, M.S.B.: CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renew. Energy 145, 1192–1213 (2020). https://doi.org/10.1016/j.renene.2019.06.038

    Article  Google Scholar 

  40. Korres, D.N., Tzivanidis, C.: Investigation of a novel small-sized bifacial cavity PTC and comparison with conventional configurations. Therm. Sci. Eng. Prog. 17, 100355 (2020). https://doi.org/10.1016/j.tsep.2019.100355

    Article  Google Scholar 

  41. Rincón-Quintero, A.D., Del Portillo-Valdés, L.A., Meneses-Jácome, A., Ascanio-Villabona, J.G., Tarazona-Romero, B.E., Durán-Sarmiento, M.A.: Performance evaluation and effectiveness of a solar-biomass hybrid dryer for drying homogeneous of cocoa beans using labview software and arduino hardware. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds.) CIT 2020. LNEE, vol. 762, pp. 238–252. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72208-1_18

    Chapter  Google Scholar 

  42. Devahastin, S., Pitaksuriyarat, S.: Use of latent heat storage to conserve energy during drying and its effect on drying kinetics of a food product. Appl. Therm. Eng. 26(14), 1705–1713 (2006). https://doi.org/10.1016/j.applthermaleng.2005.11.007

    Article  Google Scholar 

  43. Parsazadeh, M., Duan, X.: Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit. Appl. Energy 216, 142–156 (2018). https://doi.org/10.1016/j.apenergy.2018.02.052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Rincon-Quintero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rincon-Quintero, A.D., Rondon-Romero, W.L., Maradey-Lazaro, J.G., Lengerke, O., Sandoval-Rodriguez, C.L., Acosta-Cardenas, O.A. (2023). Experimental Study of a Flat Solar Collector with Thermal Energy Storage, Applying Improvements Based on Bibliometric Review and CAD Simulation. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1756. Springer, Cham. https://doi.org/10.1007/978-3-031-24971-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24971-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24970-9

  • Online ISBN: 978-3-031-24971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics