Skip to main content

Energy Harvesting: Energy Sources, Excitation Type and Conversion Mechanisms

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2022)

Abstract

The growing demand for energy has led to technological developments focused on the transformation of energy from renewable sources, where strategies capable of converting energy efficiently according to the nature of the energy have emerged. This paper presents a classification of energy sources, excitation types and energy conversion mechanisms used in energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With more tan 10 million population.

References

  1. Facchini, A., Kennedy, C., Stewart, I., Mele, R.: The energy metabolism of megacities. Appl. Energy 186(2017), 86–95 (2017). https://doi.org/10.1016/j.apenergy.2016.09.025

    Article  Google Scholar 

  2. Magazzino, C., Mele, M., Schneider, N.: A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renew. Energy 167, 99–115 (2021). https://doi.org/10.1016/j.renene.2020.11.050

    Article  Google Scholar 

  3. Zou, H.X., et al.: Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Appl. Energy 255, 113871 (2019). https://doi.org/10.1016/j.apenergy.2019.113871

    Article  Google Scholar 

  4. Shi, Y., et al.: A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013

    Article  Google Scholar 

  5. Moharamian, A., Soltani, S., Rosen, M.A., Mahmoudi, S.M.S., Morosuk, T.: A comparative thermoeconomic evaluation of three biomass and biomass-natural gas fired combined cycles using organic Rankine cycles. J. Clean. Prod. 161, 524–544 (2017). https://doi.org/10.1016/j.jclepro.2017.05.174

    Article  Google Scholar 

  6. Pang, Y., Chen, S., Chu, Y., Wang, Z.L., Cao, C.: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy 66, 104131 (2019). https://doi.org/10.1016/j.nanoen.2019.104131

    Article  Google Scholar 

  7. Chen, B., Yang, Y., Wang, Z.L.: Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater 8(10), 1–13 (2018). https://doi.org/10.1002/aenm.201702649

    Article  Google Scholar 

  8. Cheng, P., et al.: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 57, 432–439 (2019). https://doi.org/10.1016/j.nanoen.2018.12.054

    Article  Google Scholar 

  9. Zhang, S.L., et al.: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy 48, 421–429 (2018). https://doi.org/10.1016/j.nanoen.2018.03.062

    Article  Google Scholar 

  10. Zhang, L.M., et al.: Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009

    Article  Google Scholar 

  11. Iqbal, M., Khan, F.U.: Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Conv. Manag. 172, 611–618 (2018). https://doi.org/10.1016/j.enconman.2018.07.044

    Article  Google Scholar 

  12. Huang, L., et al.: Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 32(5), 1–20 (2020). https://doi.org/10.1002/adma.201902034

    Article  Google Scholar 

  13. Pu, X., et al.: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403

    Article  Google Scholar 

  14. Zou, J., Guo, X., Abdelkareem, M.A.A., Xu, L., Zhang, J.: Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers. Mech. Syst. Signal Process. 127, 345–369 (2019). https://doi.org/10.1016/j.ymssp.2019.02.047

    Article  Google Scholar 

  15. Wang, H., Jasim, A., Chen, X.: Energy harvesting technologies in roadway and bridge for different applications – a comprehensive review. Appl. Energy 212, 1083–1094 (2018). https://doi.org/10.1016/j.apenergy.2017.12.125

    Article  Google Scholar 

  16. Cahill, P., Hazra, B., Karoumi, R., Mathewson, A., Pakrashi, V.: Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mech. Syst. Signal Process. 106, 265–283 (2018). https://doi.org/10.1016/j.ymssp.2018.01.007

    Article  Google Scholar 

  17. Xi, F., et al.: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 61, 1–9 (2019). https://doi.org/10.1016/j.nanoen.2019.04.026

    Article  Google Scholar 

  18. Jiang, T., Yao, Y., Xu, L., Zhang, L., Xiao, T., Wang, Z.L.: Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2017). https://doi.org/10.1016/j.nanoen.2016.12.004

    Article  Google Scholar 

  19. Mustapa, M.A., Yaakob, O.B., Ahmed, Y.M., Rheem, C.K., Koh, K.K., Adnan, F.A.: Wave energy device and breakwater integration: a review. Renew. Sustain. Energy Rev. 77, 43–58 (2017). https://doi.org/10.1016/j.rser.2017.03.110

    Article  Google Scholar 

  20. Wu, N., Wang, Q., Xie, X.D.: Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl. Ocean Res. 50, 110–118 (2015). https://doi.org/10.1016/j.apor.2015.01.004

    Article  Google Scholar 

  21. Jeon, S.B., Kim, D., Yoon, G.W., Yoon, J.B., Choi, Y.K.: Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy 12, 636–645 (2015). https://doi.org/10.1016/j.nanoen.2015.01.039

    Article  Google Scholar 

  22. Ali, F., Raza, W., Li, X., Gul, H., Kim, K.H.: Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879–902 (2019). https://doi.org/10.1016/j.nanoen.2019.01.012

    Article  Google Scholar 

  23. Izadgoshasb, I., Lim, Y.Y., Lake, N., Tang, L., Padilla, R.V., Kashiwao, T.: Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking. Energy Conv. Manag. 161, 66–73 (2018). https://doi.org/10.1016/j.enconman.2018.01.076

    Article  Google Scholar 

  24. Liu, R., et al.: Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv. Mater. 30(8), 1–8 (2018). https://doi.org/10.1002/adma.201705195

    Article  Google Scholar 

  25. Seol, M.L., Lee, S.H., Han, J.W., Kim, D., Cho, G.H., Choi, Y.K.: Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17, 63–71 (2015). https://doi.org/10.1016/j.nanoen.2015.08.005

    Article  Google Scholar 

  26. Múčka, P.: Energy-harvesting potential of automobile suspension. Veh. Syst. Dyn. 54(12), 1651–1670 (2016). https://doi.org/10.1080/00423114.2016.1227077

    Article  Google Scholar 

  27. Lee, J., Choi, B.: Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. Energy Conv. Manag. 78, 32–38 (2014). https://doi.org/10.1016/j.enconman.2013.09.054

    Article  Google Scholar 

  28. Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017). https://doi.org/10.1016/j.rser.2017.01.073

    Article  Google Scholar 

  29. Abdelkareem, M.A.A., et al.: Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes. Mech Syst Signal Process 110, 307–332 (2018). https://doi.org/10.1016/j.ymssp.2018.03.009

    Article  Google Scholar 

  30. Gholikhani, M., Nasouri, R., Tahami, S.A., Legette, S., Dessouky, S., Montoya, A.: Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump. Appl. Energy 250, 503–511 (2019). https://doi.org/10.1016/j.apenergy.2019.05.060

    Article  Google Scholar 

  31. Seol, M.L., et al.: Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14, 201–208 (2015). https://doi.org/10.1016/j.nanoen.2014.11.016

    Article  Google Scholar 

  32. Li, D., Wu, Y., da Ronch, A., Xiang, J.: Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Prog. Aerosp. Sci. 86, 28–62 (2016). https://doi.org/10.1016/j.paerosci.2016.08.001

    Article  Google Scholar 

  33. Toyabur, R.M., Salauddin, M., Cho, H., Park, J.Y.: A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Conv. Manag. 168, 454–466 (2018). https://doi.org/10.1016/j.enconman.2018.05.018

    Article  Google Scholar 

  34. Azam, A., et al.: Design, fabrication, modelling and analyses of a movable speed bump-based mechanical energy harvester (MEH) for application on road. Energy 214, 118894 (2021). https://doi.org/10.1016/j.energy.2020.118894

    Article  Google Scholar 

  35. Choi, D., Lee, S., Park, S.M., Cho, H., Hwang, W., Kim, D.S.: Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 8(8), 2481–2491 (2015). https://doi.org/10.1007/s12274-015-0756-4

    Article  Google Scholar 

  36. Wang, J., et al.: Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conv. Manag. 213, 112835 (2020). https://doi.org/10.1016/j.enconman.2020.112835

    Article  Google Scholar 

  37. Fan, K., et al.: A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting. Energy Conv. Manag. 198, 111820 (2019). https://doi.org/10.1016/j.enconman.2019.111820

    Article  Google Scholar 

  38. Mao, Y., Geng, D., Liang, E., Wang, X.: Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15, 227–234 (2015). https://doi.org/10.1016/j.nanoen.2015.04.026

    Article  Google Scholar 

  39. Sun, H., Kim, E.S., Nowakowski, G., Mauer, E., Bernitsas, M.M.: Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions. Renew. Energy 99, 936–959 (2016). https://doi.org/10.1016/j.renene.2016.07.024

    Article  Google Scholar 

  40. Fu, H., Yeatman, E.M.: A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion. Energy 125, 152–161 (2017). https://doi.org/10.1016/j.energy.2017.02.115

    Article  Google Scholar 

  41. Kuang, S.Y., Chen, J., Cheng, X.B., Zhu, G., Wang, Z.L.: Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy 17, 10–16 (2015). https://doi.org/10.1016/j.nanoen.2015.07.011

    Article  Google Scholar 

  42. Zou, H.X., et al.: Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Conv. Manag. 148, 1391–1398 (2017). https://doi.org/10.1016/j.enconman.2017.07.005

    Article  Google Scholar 

  43. Hou, C., et al.: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 63, 103871 (2019). https://doi.org/10.1016/j.nanoen.2019.103871

    Article  Google Scholar 

  44. Gholikhani, M., Shirazi, S.Y.B., Mabrouk, G.M., Dessouky, S.: Dual electromagnetic energy harvesting technology for sustainable transportation systems. Energy Conv. Manag. 230, 11380 (2021). https://doi.org/10.1016/j.enconman.2020.113804

    Article  Google Scholar 

  45. He, J., et al.: Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 43, 326–339 (2018). https://doi.org/10.1016/j.nanoen.2017.11.039

    Article  Google Scholar 

  46. Dehkordi, A.M., Zebarjadi, M., He, J., Tritt, T.M.: Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R Rep. 97, 1–22 (2015). https://doi.org/10.1016/j.mser.2015.08.001

    Article  Google Scholar 

  47. Du, Y., Xu, J., Paul, B., Eklund, P.: Flexible thermoelectric materials and devices. Appl. Mater. Today 12, 366–388 (2018). https://doi.org/10.1016/j.apmt.2018.07.004

    Article  Google Scholar 

  48. Kim, T.Y., Negash, A.A., Cho, G.: Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Conv. Manag. 124, 280–286 (2016). https://doi.org/10.1016/j.enconman.2016.07.013

    Article  Google Scholar 

  49. Zi, Y., et al.: Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015). https://doi.org/10.1002/adma.201500121

    Article  Google Scholar 

  50. Wang, S., Wang, Z.L., Yang, Y.: A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric-piezoelectric-pyroelectric effects. Adv. Mater. 28(15), 2881–2887 (2016). https://doi.org/10.1002/adma.201505684

    Article  Google Scholar 

  51. Bierman, D.M., et al.: Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1(6) (2016). https://doi.org/10.1038/nenergy.2016.68

  52. Chang, S.Y., Cheng, P., Li, G., Yang, Y.: Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2(6), 1039–1054 (2018). https://doi.org/10.1016/j.joule.2018.04.005

    Article  Google Scholar 

  53. Wang, J., Zhou, S., Zhang, Z., Yurchenko, D.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers Manag 181, 645–652 (2019). https://doi.org/10.1016/j.enconman.2018.12.034

    Article  Google Scholar 

  54. Wang, W., Cao, J., Zhang, N., Lin, J., Liao, W.H.: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Conv. Manag. 132, 189–197 (2017). https://doi.org/10.1016/j.enconman.2016.11.026

    Article  Google Scholar 

  55. Cao, Y., Liu, Y., Zakeeruddin, S.M., Hagfeldt, A., Grätzel, M.: Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics. Joule 2(6), 1108–1117 (2018). https://doi.org/10.1016/j.joule.2018.03.017

    Article  Google Scholar 

  56. Dong, K., et al.: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1–12 (2018). https://doi.org/10.1002/adma.201804944

    Article  Google Scholar 

  57. Liu, J., et al.: Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl. Mater. Interfaces 10(50), 44033–44040 (2018). https://doi.org/10.1021/acsami.8b15332

    Article  Google Scholar 

  58. Wang, Y., et al.: Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31(29), 1–47 (2019). https://doi.org/10.1002/adma.201807916

    Article  Google Scholar 

  59. Cao, M., Wang, X., Cao, W., Fang, X., Wen, B., Yuan, J.: Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1–8 (2018). https://doi.org/10.1002/smll.201800987

    Article  Google Scholar 

  60. Moss, S.D., Payne, O.R., Hart, G.A., Ung, C.: Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Mater. Struct. 24(2), 23001 (2015). https://doi.org/10.1088/0964-1726/24/2/023001

    Article  Google Scholar 

  61. Yang, Z., Zhou, S., Zu, J., Inman, D.: High-performance piezoelectric energy harvesters and their applications. Joule 2(4), 642–697 (2018). https://doi.org/10.1016/j.joule.2018.03.011

    Article  Google Scholar 

  62. Fan, F.R., Tang, W., Wang, Z.L.: Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). https://doi.org/10.1002/adma.201504299

    Article  Google Scholar 

  63. Dong, K., Peng, X., Wang, Z.L.: Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1–43 (2020). https://doi.org/10.1002/adma.201902549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Duran-Sarmiento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duran-Sarmiento, M.A., Borras-Pinilla, C., Del Portillo-Valdes, L.A. (2023). Energy Harvesting: Energy Sources, Excitation Type and Conversion Mechanisms. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1756. Springer, Cham. https://doi.org/10.1007/978-3-031-24971-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24971-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24970-9

  • Online ISBN: 978-3-031-24971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics