Skip to main content

Involvement of Nitric Oxide in Insulin Secretion to Carbohydrate Metabolism

  • Chapter
  • First Online:
Nitric Oxide: From Research to Therapeutics

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 22))

  • 350 Accesses

Abstract

Since the discovery of nitric oxide (NO) as an important mediator of vasoregulation, the molecule has been found to be involved in several physiological and pathological processes in human. One area of recent interest is the potential role of NO in modulation of insulin secretion. Emerging data suggest that NO augments insulin release from pancreatic beta cells through increasing intracellular Ca2+ level or via S-nitrosylation of glucokinase, as well as vasodilation of islet vasculature. Besides, synthesis of NO is also a prerequisite for effective insulin sensitivity in targeted tissues. Thus, NO is involved in glucose uptake and disrupted NO pathways play a role in pathogenesis of insulin resistance in hypertension, obesity and type 2 diabetes mellitus. In this review, we summarize the updated paradigms on the involvement of NO in insulin secretion from islets of Langerhans and glucose uptake by various tissue system. Hence, a better understanding of nitric oxide synthase (NOS)–NO system in regulation of glucose homeostasis can hopefully facilitate the development of new treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jornvall H, Furchgott RF (2003) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. In: Jornvall H (ed) Nobel Lectures in Physiology or Medicine 1996–2000. Singapore, World Scientific Publishing Company, pp 152–169

    Chapter  Google Scholar 

  2. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  3. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Culotta E, Koshland DE Jr (1992) NO news is good news. Science 258:1862–1864

    Article  CAS  PubMed  Google Scholar 

  5. Ignaro LJ (1996) Nitric oxide as a communication signal in vascular and neuronal cells. In: Lancaster J (ed) Nitric oxide-principles and actions. New York, Academic Press, pp 111–135

    Chapter  Google Scholar 

  6. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  Google Scholar 

  7. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fledman PL, Griffith OW, Stuchr DJ (1993) The surprising life of nitric oxide. Chem Eng News 20:26–38

    Google Scholar 

  9. Espluges JV (2002) NO as a signaling molecule in nervous system. Br J Pharmacol 135:1078–1095

    Google Scholar 

  10. McDonald B, Reep B, Lapetina EG, Vedia LM (1993) Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA 90:11122–11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beckman JS (1996) The physiological and pathological chemistry of nitric oxide. In: Lancaster J (ed) Nitric oxide-principles and actions. New York, Academic Press, pp 1–81

    Google Scholar 

  12. Schwentker A, Vodovotz Y, Weller R, Billiar TR (2002) Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7(1):1–10

    Article  CAS  PubMed  Google Scholar 

  13. Sinha AK, Bhattacharya S, Acharya K, Mazumder S (1998) Administration of insulin prevents death due to thrombosis in mice. Ind J Physiol Allied Sci 52:46–48

    CAS  Google Scholar 

  14. Luo JD, Chen AF (2005) Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin 26(3):259–264

    Article  CAS  PubMed  Google Scholar 

  15. Sinha AK, Acharya K, Bhattacharya S, Patra SC, Guha M, Ray U et al (2002) Neutralization of “antineoplastin” of insulin activated nitric oxide synthase antibody and its effects in cancers. J Cancer Res Clin Oncol 128:659–668

    Article  CAS  PubMed  Google Scholar 

  16. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916

    Article  CAS  PubMed  Google Scholar 

  17. Qaid MM, Abdelrahman MM (2016) Role of insulin and other related hormones in energy metabolism-a review. Cogent Food Agric. 2:1267691

    Google Scholar 

  18. Squires EJ (2011) Manipulation of growth and carcass composition. In: Applied animal endocrinology, 2nd edn. Guelph, Department of Animal and Poultry Science, University of Guelph, pp 89–155

    Google Scholar 

  19. Brockman RP, Laarveld B (1986) Hormonal regulation of metabolism in ruminants; a review. Livest Prod Sci 14:313–334

    Article  CAS  Google Scholar 

  20. Frayn KN (2009) Metabolic regulation: a human perspective, 3rd edn. University of Oxford, Oxford

    Google Scholar 

  21. McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648–653

    Article  CAS  PubMed  Google Scholar 

  22. Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D et al (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13(3):198–208

    Article  CAS  PubMed  Google Scholar 

  23. Johnson JH, Ogawa A, Chen L, Orci L, Newgard CB, Alam T et al (1990) Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science 250:546–549

    Article  CAS  PubMed  Google Scholar 

  24. Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53

    Article  PubMed  PubMed Central  Google Scholar 

  25. Komatsu M, Takei M, Ishii H, Sato Y (2013) Glucose-stimulated insulin secretion: A newer perspective. J Diabetes Invest 4(6):511–516

    Article  CAS  Google Scholar 

  26. Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P (2008) Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586:3313–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rizzo MA, Magnuson MA, Drain PF, Piston DW (2002) A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J Biol Chem 277:34168–34175

    Article  CAS  PubMed  Google Scholar 

  28. Stubbs M, Aiston S, Agius L (2000) Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin secreting cells. Diabetes 49:2048–2055

    Article  CAS  PubMed  Google Scholar 

  29. Markwardt ML, Nkobena A, Ding SY, Rizzo MA (2012) Association with nitric oxide synthase on insulin secretory granules regulates glucokinase protein levels. Mol Endocrinol 26(9):1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt HH, Warner TD, Ishii K, Sheng H, Murad F (1992) Insulin secretion from pancreatic B cells caused by Larginine-derived nitrogen oxides. Science 255:721–723

    Article  CAS  PubMed  Google Scholar 

  31. Henningsson R, Alm P, Ekstrom P, Lundquist I (1999) Heme oxygenase and carbon monoxide: regulatory roles in islet hormone release: a biochemical, immunohistochemical, and confocal microscopic study. Diabetes 48:66–76

    Article  CAS  PubMed  Google Scholar 

  32. Spinas GA, Laffranchi R, Francoys I, David I, Richter C, Reinecke M (1998) The early phase of glucose-stimulated insulin secretion requires nitric oxide. Diabetologia 41:292–299

    Article  CAS  PubMed  Google Scholar 

  33. Smukler SR, Tang L, Wheeler MB, Salapatek AM (2002) Exogenous nitric oxide and endogenous glucose-stimulated beta-cell nitric oxide augment insulin release. Diabetes 51:3450–3460

    Article  CAS  PubMed  Google Scholar 

  34. Ishihara H, Asano T, Tsukuda K, Katagiri H, Inukai K, Anai M et al (1993) Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36(11):1139–1145

    Article  CAS  PubMed  Google Scholar 

  35. Campbell SC, Richardson H, Ferris WF, Butler CS, Macfarlane WM (2007) Nitric oxide stimulates insulin gene transcription in pancreatic beta-cells. Biochem Biophys Res Commun 353:1011–1016

    Article  CAS  PubMed  Google Scholar 

  36. Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K (1999) Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 274:1011–1016

    Google Scholar 

  37. Henningsson R, Salehi A, Lundquist I (2002) Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am J Physiol Cell Physiol 283:C296-304

    Article  CAS  PubMed  Google Scholar 

  38. Mezghenna K, Pomiès P, Chalançon A, Castex F, Leroy J, Niclauss N et al (2011) Increased neuronal nitric oxide synthase dimerisation is involved in rat and human pancreatic beta cell hyperactivity in obesity. Diabetologia 54:2856–2866

    Article  CAS  PubMed  Google Scholar 

  39. Jimenez-Feltstom J, Lundquist I, Salehi A (2005) Glucose stimulates the expression and activities of nitric oxide synthases in incubated rat islets: an effect counteracted by GLP-1 through the cyclic AMP/PKA pathway. Cell Tissue Res 319:221–230

    Google Scholar 

  40. Laffranchi R, Gogvadze V, Richter C, Spinas GA (1995) Nitric oxide (nitrogen monoxide, NO) stimulates insulin secretion by inducing calcium release from mitochondria. Biochem Biophys Res Commun 217:584–591

    Article  CAS  PubMed  Google Scholar 

  41. Kaneko Y, Ishikawa T, Amano S, Nakayama K (2003) Dual effect of nitric oxide on cytosolic Ca2+ concentration and insulin secretion in rat pancreatic beta-cells. Am J Physiol Cell Physiol 284:C1215–C1222

    Article  CAS  PubMed  Google Scholar 

  42. Kruszelnicka O (2014) Nitric oxide vs insulin secretion, action and clearance. Diabetologia 57(1):257–258

    Article  PubMed  Google Scholar 

  43. Krentz A. Insulin Resistance: A Clinical Handbook. John Wiley & Sons. 2002.

    Google Scholar 

  44. Petersen M, Shulman GI (2019) Mechanism of insulin resistance. Physiol Rev 98(4):2133–2223

    Article  Google Scholar 

  45. Wanant S, Quon MJ (2000) Insulin receptor binding kinetics: modelling and simulation studies. J Theor Biol 205(3):355–364

    Article  CAS  PubMed  Google Scholar 

  46. Kahn NN, Acharya K, Bhattacharya S, Acharya R, Mazumder S, Sinha AK (2000) Nitric oxide: the second messenger of insulin. IUBMB Life 49:441–450

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharya S, Chakraborty S, Basu Ray S, Kahn NN, Sinha AK (2001) Purification and properties of insulin-activated nitric oxide synthase from human erythrocyte membrane. Arch Biochem Physiol. 109:441–449

    Google Scholar 

  48. Young ME, Radda GK, Leighton B (1997) Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem J 322:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng G, Quon MJ (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin: direct measurement in vascular endothelial cells. J Clin Invest 98:894–8

    Google Scholar 

  50. Jiang H, Torregrossa AC, Potts A, Pierini D, Aranke M, Garg HK et al (2014) Dietary nitrite improves insulin signaling through GLUT4 translocation. Free Radic Biol Med 67:51–57

    Article  CAS  PubMed  Google Scholar 

  51. Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. Bio Factors. 35(1):21–27

    Google Scholar 

  52. Capanni C, Squarzoni S, Petrini S, Villanova M, Muscari C, Maraldi NM et al (1998) Increase of neuronal nitric oxide synthase in rat skeletal muscle during ageing. Biochem Biophys Res Commun 245(1):216–219

    Article  CAS  PubMed  Google Scholar 

  53. Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signalling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6(1):a009191

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kellogg DL, McCammon KM, Hinchee-Rodriguez KS, Adamo ML, Roman JL (2017) Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes. Free Rad Biol Med. 110:261–269

    Google Scholar 

  55. Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose uptake in skeletal muscle. J Appl Physiol 82:359–363

    Article  CAS  PubMed  Google Scholar 

  56. Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK (2002) Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes 51(8):2572–2580

    Article  CAS  PubMed  Google Scholar 

  57. Khan BB (1992) Facilitative glucose transporters: Regulatory mechanisms and dysregulation in diabetes. J Clin Invest 89:1367–1374

    Article  Google Scholar 

  58. Baron AD (1994) Hemodynamic actions of insulin. Am J Physiol Endocrinol Metabol 267:E187-202

    Article  CAS  Google Scholar 

  59. Shankar R, Zhu JS, Ladd B, Henry D, Shen HQ, Baron AD (1998) Central nervous system nitric oxide synthase activity regulates insulin secretion and action. J Clin Invest 102:1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McGrowder D, Ragoobirsingh D, Brown P (2006) Acute effects of exogenous nitric oxide on glucose uptake in skeletal muscle of normoglycaemic and diabetic rats. Med Sci Monitor 12:BR 28–35

    Google Scholar 

  61. Young ME, Leighton B (1998) Evidence for altered sensitivity of the nitric oxide/cGMP signaling cascade in insulin-resistant skeletal muscle. Biochem J 329:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:1–10

    Google Scholar 

  63. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for Amp-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373

    CAS  PubMed  Google Scholar 

  64. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) Amp-activated protein kinase activation cause GLUT 4 translocation in skeletal muscle. Diabetes 48:1667–1671

    Article  CAS  PubMed  Google Scholar 

  65. Fryer L, Hajduch E, Rencurel F, Salt I, Hundal H, Hardie D, Carling D (2000) Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49:1978–1985

    Article  CAS  PubMed  Google Scholar 

  66. Leclercq IA, Da Silva MA, Schroyen B, Van Hul N, Geerts A (2007) Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol 47(1):142–156

    Article  CAS  PubMed  Google Scholar 

  67. McNaughton L, Puttagunta L, Martinez-Cuesta MA, Kneteman N, Mayers I, Moqbel R et al (2002) Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci USA 99(26):17161–17166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cordes CM, Bennett RG, Siford GL, Hamel FG (2009) Nitric oxide inhibits insulin degrading enzyme activity and function through S-nitrosylation. Biochem Pharmacol 77(6):1064–1073

    Article  CAS  PubMed  Google Scholar 

  69. Russel RR, Li J, Coven DL, Pypaert M, Zechne C, Palmeri M et al (2004) AMP-activated protein kinase mediates ischaemic glucose uptake and prevents post-ischaemic cardiac dysfunction, apoptosis and injury. J Clin Invest 114:495–503

    Article  Google Scholar 

  70. Lei B, Matsuo K, Labinskyy V, Sharma N, Chandler MP, Ahn A et al (2005) Exogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo. Proc Natl Acad Sci USA 102(19):6966–6971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jensen J, Sharikabad MN, Ostbye KM, Melien O, Brors O (2003) Evidence that nitroprusside stimulates glucose uptake in cardiomyocytes via mitogen-activated protein kinase. Arch Physiol Biochem 111:239–245

    Article  CAS  PubMed  Google Scholar 

  72. Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M et al (2002) Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obesity. 26:838–847

    Article  CAS  Google Scholar 

  73. Roy D, Perreault M, Marette A (1998) Insulin stimulation of glucose uptake in skeletal and adipose tissue in vivo is NO dependent. Am J Physiol 274:E692–E699

    CAS  PubMed  Google Scholar 

  74. Ribiere C, Jaubert AM, Gaudiot N, Sabourault D, Marcus ML, Boucher JL et al (1996) White adipose tissue nitric oxide synthase: A potential source for NO production. Biochem Biophys Res Commun 222:706–712

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka T, Nakatani K, Morioka K, Urakawa H, Maruyama N, Kitagawa N et al (2003) Nitric oxide stimulates glucose transport through insulin-dependent GLUT-4 translocation in 3T3-L1 adipocytes. Eur J Endocrinol 149:61–67

    Article  CAS  PubMed  Google Scholar 

  76. Gheibi S, Samsonov AP, Shahsanam G, Vazquez AB, Kashfi K (2020) Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 176:113819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatua, S., Bank, S., Acharya, K. (2023). Involvement of Nitric Oxide in Insulin Secretion to Carbohydrate Metabolism. In: Ray, A., Gulati, K. (eds) Nitric Oxide: From Research to Therapeutics. Advances in Biochemistry in Health and Disease, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-24778-1_10

Download citation

Publish with us

Policies and ethics