Skip to main content

InDNI: An Infection Time Independent Method for Diffusion Network Inference

  • Conference paper
  • First Online:
Information Retrieval (CCIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13819))

Included in the following conference series:

  • 255 Accesses

Abstract

Diffusion network inference aims to reveal the message propagation process among users and has attracted many research interests due to the fundamental role it plays in some real applications, such as rumor-spread forecasting and epidemic controlling. Most existing methods tackle the task with exact node infection time. However, collecting infection time information is time-consuming and labor-intensive, especially when information flows are huge and complex. To combat the problem, we propose a new diffusion network inference algorithm that only relies on infection states. The proposed method first encodes several observation states into a node infection matrix and then obtains the node embedding via the variational autoencoder (VAE). Nodes with the least Wasserstein distance of embeddings are predicted for existing propagation edges. Meanwhile, to reduce the complexity, a novel clustering-based filtering strategy is designed for selecting latent propagation edges. Extensive experiments show that the proposed model outperforms the state-of-the-art infection time independent models while demonstrating comparable performance over infection time based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43 (2005)

    Google Scholar 

  2. Amin, K., Heidari, H., Kearns, M.: Learning from contagion (without timestamps). In: International Conference on Machine Learning. PMLR (2014)

    Google Scholar 

  3. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  4. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  5. Erdos, P., Rényi, A., et al.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MATH  Google Scholar 

  6. Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Mich. Math. J. 31(2), 231–240 (1984)

    Article  MATH  Google Scholar 

  7. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. ACM Trans. Knowl. Discov. Data (TKDD) 5(4), 1–37 (2012)

    Article  Google Scholar 

  8. Gripon, V., Rabbat, M.: Reconstructing a graph from path traces. In: 2013 IEEE International Symposium on Information Theory. IEEE (2013)

    Google Scholar 

  9. Han, K., Tian, Y., Zhang, Y., Han, L., Huang, H., Gao, Y.: Statistical estimation of diffusion network topologies. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 625–636. IEEE (2020)

    Google Scholar 

  10. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28, 100–108 (1979)

    Google Scholar 

  11. Huang, H., Yan, Q., Gan, T., Niu, D., Lu, W., Gao, Y.: Learning diffusions without timestamps. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 582–589 (2019)

    Google Scholar 

  12. Kefato, N.Z., Montresor, A.: DeepInfer: diffusion network inference through representation learning. In: Proceedings of the 13th International Workshop Mining Learning Graphs (2017)

    Google Scholar 

  13. Kefato, Z.T., Sheikh, N., Montresor, A.: REFINE: representation learning from diffusion events. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) LOD 2018. LNCS, vol. 11331, pp. 141–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-13709-0_12

    Chapter  Google Scholar 

  14. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  15. Kurashima, T., Iwata, T., Takaya, N., Sawada, H.: Probabilistic latent network visualization: inferring and embedding diffusion networks. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1236–1245 (2014)

    Google Scholar 

  16. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11(2) (2010)

    Google Scholar 

  17. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 695–704 (2008)

    Google Scholar 

  18. Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  19. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  21. Rodriguez, M.G., Leskovec, J., Balduzzi, D., Schölkopf, B.: Uncovering the structure and temporal dynamics of information propagation. Netw. Sci. 2(1), 26–65 (2014)

    Article  Google Scholar 

  22. Wang, H., Banerjee, A.: Bregman alternating direction method of multipliers. In: Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  23. Xia, Y., Chen, T.H.Y., Kivelä, M.: Applicability of multilayer diffusion network inference to social media data. arXiv preprint arXiv:2111.06235 (2021)

  24. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in Wasserstein space. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under grant numbers U1836111 and the National Social Science Fund of China under grant number 19ZDA329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G., Wang, Y., Shao, J., Shi, B., Shen, H., Cheng, X. (2023). InDNI: An Infection Time Independent Method for Diffusion Network Inference. In: Chang, Y., Zhu, X. (eds) Information Retrieval. CCIR 2022. Lecture Notes in Computer Science, vol 13819. Springer, Cham. https://doi.org/10.1007/978-3-031-24755-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24755-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24754-5

  • Online ISBN: 978-3-031-24755-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics