Skip to main content

Technological Approaches to Improve Food Quality for Human Health

  • Chapter
  • First Online:
Nutritional Health

Part of the book series: Nutrition and Health ((NH))

  • 745 Accesses

Abstract

Nutrients and non-nutrients are highly variable, and, in some cases, unstable in food. Health-promoting components of food can be enhanced and preserved using pre- or postharvest/slaughter technologies. Modification of animal feeds and plant cultivars through traditional breeding or using bioengineering to produce genetically modified organisms (GMOs) can improve their nutritional profiles. Fortification of nutrients to specific foods is applied to reduce nutrient deficiencies. Fortification of non-nutrient health-promoting compounds, or “bioactives,” can lead to increased consumption of health-promoting compounds. Fermentation alters food composition and can be used to create unique molecules for improving human health. There have been many developments in the production of various modified foods including lactose-free milk, gluten-free foods, and substitutes for meat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EFSA Panel on Dietetic Products Nutrition and Allergies (NDA). Scientific opinion on the modification of the authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to article 13(5) of regulation (EC) no 1924/2006 following a request in accordance with article 19 of regulation (EC) no 1924/2006. EFSA J. 2014;12(5):3654.

    Google Scholar 

  2. U.S. Food & Drug Administration. Authorized health claims that meet the significant scientific agreement (SSA) standard. 2018. Available at https://www.fda.gov/food/food-labeling-nutrition/authorized-health-claims-meet-significant-scientific-agreement-ssa-standard. Accessed 1 Sept 2021.

  3. Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants. 2019;8:429.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Faustman C, Cassens RG, Schaefer DM, Buege DR, Williams SN, Scheller KK. Improvement of pigment and lipid stability in Holstein steer beef by dietary supplementation with vitamin E. J Food Sci. 1989;54:858–62.

    Article  CAS  Google Scholar 

  5. Kanner J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol Nutr Food Res. 2007;51:1094–101.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Chen X, Yang R, Ma Q, Qi W, Sanidad KZ, et al. Thermally processed oil exaggerates colonic inflammation and colitis-associated colon tumorigenesis in mice. Cancer Prev Res. 2019;12:741.

    Article  CAS  Google Scholar 

  7. Fraeye I, Bruneel C, Lemahieu C, Buyse J, Muylaert K, Foubert I. Dietary enrichment of eggs with omega-3 fatty acids: a review. Food Res Int. 2012;48:961–9.

    Article  CAS  Google Scholar 

  8. Vas Dias FW. Authorised EU health claims for DHA and EPA. In: Sadler MJ, editor. Foods, nutrients and food ingredients with authorised EU health claims, vol. 2. Oxford: Woodhead Publishing; 2015. p. 237–56.

    Chapter  Google Scholar 

  9. Stanton AV, James K, Brennan MM, O’Donovan F, Buskandar F, Shortall K, et al. Omega-3 index and blood pressure responses to eating foods naturally enriched with omega-3 polyunsaturated fatty acids: a randomized controlled trial. Sci Rep. 2020;10:15444.

    Article  PubMed  PubMed Central  Google Scholar 

  10. American Heart Association. Fish and omega-3 fatty acids. 2017. Available at https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/fish-and-omega-3-fatty-acids. Accessed 1 Sept 2021.

  11. Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep. 2016;6:21892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization. Vitamin A deficiency. 2021. Available at https://www.who.int/data/nutrition/nlis/info/vitamin-a-deficiency. Accessed 26 July 2021.

  13. Department of Agriculture Philipine Rice Research Institute. Filipinos soon to plant and eat Golden Rice. 2021. Available at https://www.philrice.gov.ph/filipinos-soon-to-plant-and-eat-golden-rice/. Accessed 1 Sept 2021.

  14. International Rice Research Institute. Biofortification. Available at https://www.irri.org/biofortification. Accessed 1 Sept 2021.

  15. Shew AM, Nalley LL, Snell HA, Nayga RM, Dixon BL. CRISPR versus GMOs: public acceptance and valuation. Glob Food Sec. 2018;19:71–80.

    Article  Google Scholar 

  16. Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang J-P, Ondzighi-Assoume CA, et al. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep. 2020;39:245–57.

    Article  CAS  PubMed  Google Scholar 

  17. U.S. Food and Drug Administration. Acrylamide. 2021. Available at https://www.fda.gov/food/chemical-contaminants-food/acrylamide. Accessed 1 Sept 2021.

  18. Wang Y, Bethke PC, Bussan AJ, Glynn MT, Holm DG, Navarro FM, et al. Acrylamide-forming potential and agronomic properties of elite US potato germplasm from the national fry processing trial. Crop Sci. 2016;56:30–9.

    Article  Google Scholar 

  19. Bethke PC. Progress and successes of the specialty crop research initiative on acrylamide reduction in processed potato products. Am J Potato Res. 2018;95:328–37.

    Article  CAS  Google Scholar 

  20. Federal Register. J.R. Simplot Co.: determination of nonregulated status for z6 potatoes with late blight protection, low acrylamide potential, lowered reducing sugars, and reduced black spot. In: Animal and plant health inspection service, ed. 86 FR 22012. 2021:22012.

    Google Scholar 

  21. Perkowski M. McDonald’s has no plans for GMO potatoes. 2018. Available at https://www.capitalpress.com/nation_world/business/mcdonald-s-has-no-plans-for-gmo-potatoes/article_5af2b6b4-c251-5dfb-9fbf-879dff547588.html. Accessed 1 Sept 2021.

  22. Cooperstone JL, Ralston RA, Riedl KM, Haufe TC, Schweiggert RM, King SA, et al. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol Nutr Food Res. 2015;59:658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 2008;26:1301–8.

    Article  CAS  PubMed  Google Scholar 

  24. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94–102.

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Sun Q, Giovannucci E, Mozaffarian D, Manson JE, Willett WC, et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014;12:215.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eussen SJ, van Dongen MC, Wijckmans N, den Biggelaar L, Oude Elferink SJ, Singh-Povel CM, et al. Consumption of dairy foods in relation to impaired glucose metabolism and type 2 diabetes mellitus: the Maastricht study. Br J Nutr. 2016;115:1453–61.

    Article  CAS  PubMed  Google Scholar 

  27. Patra JK, Das G, Paramithiotis S, Shin HS. Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front Microbiol. 2016;7:1493.

    Article  PubMed  PubMed Central  Google Scholar 

  28. An SY, Lee MS, Jeon JY, Ha ES, Kim TH, Yoon JY, et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab. 2013;63:111–9.

    Article  CAS  PubMed  Google Scholar 

  29. Murakami K, Yamanaka N, Ohnishi K, Fukayama M, Yoshino M. Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food. Food Funct. 2012;3:674–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.

    Article  PubMed  Google Scholar 

  31. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Pijkeren J-P, Barrangou R. Genome editing of food-grade lactobacilli to develop therapeutic probiotics. Microbiol Spectr. 2017;5(5) https://doi.org/10.1128/microbiolspec.BAD-0013-2016.

  34. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020;17:687–701.

    Article  PubMed  PubMed Central  Google Scholar 

  35. U.S. Food and Drug Administration. Questions and answers on FDA's fortification policy. 2015. Available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-questions-and-answers-fdas-fortification-policy. Accessed 1 Sept 2021.

  36. Yang Y, McClements DJ. Vitamin E bioaccessibility: influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chem. 2013;141:473–81.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Zhang Q, Huang H, Liu Z. The efficacy and acceptability of curcumin for the treatment of depression or depressive symptoms: a systematic review and meta-analysis. J Affect Disord. 2021;282:242–51.

    Article  CAS  PubMed  Google Scholar 

  38. Ashtary-Larky D, Rezaei Kelishadi M, Bagheri R, Moosavian SP, Wong A, Davoodi SH, et al. The effects of nano-curcumin supplementation on risk factors for cardiovascular disease: a GRADE-assessed systematic review and meta-analysis of clinical trials. Antioxidants. 2021;10:1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Howells L, Malhotra Mukhtyar R, Theofanous D, Pepper C, Thomas A, Brown K, et al. A systematic review assessing clinical utility of curcumin with a focus on cancer prevention. Mol Nutr Food Res. 2021;65:e2000977.

    Article  PubMed  Google Scholar 

  40. Smith JD, Zhu Y, Vanage V, Jain N, Holschuh N, Hermetet AA. Association between ready-to-eat cereal consumption and nutrient intake, nutritional adequacy, and diet quality among infants, toddlers, and children in the National Health and nutrition examination survey 2015-2016. Nutrients. 2019;11:1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghaedi E, Kord-Varkaneh H, Mohammadi H, Askarpour M, Miraghajani M. Phytosterol supplementation could improve atherogenic and anti-atherogenic apolipoproteins: a systematic review and dose-response meta-analysis of randomized controlled trials. J Am Coll Nutr. 2020;39:82–92.

    Article  CAS  PubMed  Google Scholar 

  42. Soto-Méndez MJ, Rangel-Huerta OD, Ruiz-López MD, Martínez de Victoria E, Anguita-Ruiz A, Gil A. Role of functional fortified dairy products in cardiometabolic health: a systematic review and meta-analyses of randomized clinical trials. Adv Nutr. 2019;10(S2):S251–71.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Asgar MA, Fazilah A, Huda N, Bhat R, Karim AA. Nonmeat protein alternatives as meat extenders and meat analogs. Compr Rev Food Sci Food Saf. 2010;9:513–29.

    Article  CAS  PubMed  Google Scholar 

  44. McGowan EC, Peng RD, Salo PM, Zeldin DC, Keet CA. Changes in food-specific IgE over time in the National health and nutrition examination survey (NHANES). J Allergy Clin Immunol Pract. 2016;4:713–20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2:e185630.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Post MJ. Cultured meat from stem cells: challenges and prospects. Meat Sci. 2012;92:297–301.

    Article  PubMed  Google Scholar 

  47. Zhong WV, Van Horn L, Greenland P, Carnethon RM, Ning H, Wilkins TJ, et al. Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Int Med. 2020;180:503–12.

    Article  CAS  Google Scholar 

  48. Song Y, Manson JE, Buring JE, Liu S. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: the women's health study. Diabetes Care. 2004;27:2108–15.

    Article  CAS  PubMed  Google Scholar 

  49. Larsson SC, Wolk A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer. 2006;119:2657–64.

    Article  CAS  PubMed  Google Scholar 

  50. Munblit D, Perkin RM, Palmer JD, Allen JK, Boyle JR. Assessment of evidence about common infant symptoms and cow’s milk allergy. JAMA Pediat. 2020;174:599–608.

    Article  Google Scholar 

  51. Hochwallner H, Schulmeister U, Swoboda I, Spitzauer S, Valenta R. Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention. Methods. 2014;66:22–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Linhart BF, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular approaches for diagnosis, therapy and prevention of cow’s milk allergy. Nutrients. 2019;11:1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet. 2009;124:579–91.

    Article  CAS  PubMed  Google Scholar 

  54. Misselwitz B, Pohl D, Frühauf H, Fried M, Vavricka SR, Fox M. Lactose malabsorption and intolerance: pathogenesis, diagnosis and treatment. United European Gastroenterol J. 2013;1:151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dekker PJT, Koenders D, Bruins MJ. Lactose-free dairy products: market developments, production, nutrition and health benefits. Nutrients. 2019;11:551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adhikari K, Dooley ML, Chambers E IV, Bhumiratana N. Sensory characteristics of commercial lactose-free milks manufactured in the United States. LWT Food Sci Technol. 2010;43:113–8.

    Article  CAS  Google Scholar 

  57. Atra R, Vatai G, Bekassy-Molnar E, Balint A. Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J Food Eng. 2005;67:325–32.

    Article  Google Scholar 

  58. Zhang H, Tao Y, He Y, Pan J, Yang K, Shen J, et al. Preparation of low-lactose milk powder by coupling membrane technology. ACS Omega. 2020;5:8543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bazinet L, Lamarchey F, Ippersiel D. Bipolar-membrane electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci Technol. 1998;9:107–13.

    Article  CAS  Google Scholar 

  60. Melini V, Melini F. Gluten-free diet: gaps and needs for a healthier diet. Nutrients. 2019;11:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gujral N, Freeman HJ, Thomson ABR. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol. 2012;18:6036–59.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kumar P, Chatli MK, Mehta N, Singh P, Malav OP, Verma AK. Meat analogues: health promising sustainable meat substitutes. Crit Rev Food Sci Nutr. 2017;57:923–32.

    Article  CAS  PubMed  Google Scholar 

  63. Guo M. Soy food products and their health benefits. In: Guo M, editor. Functional foods: principles and technology. Witney, Oxford: Woodhead Publishing Series in Food Science, Technology and Nutrition; 2009. p. 237–77.

    Chapter  Google Scholar 

  64. Denny A, Lunn B, Lunn J. Mycoprotein and health Nutr Bull. 2008;33:298–310.

    Article  Google Scholar 

  65. U.S. Food and Drug Administration. FDA In Brief: FDA approval of soy leghemoglobin as a color additive is now effective. 2019. Available at https://www.fda.gov/news-events/fda-brief/fda-brief-fda-approval-soy-leghemoglobin-color-additive-now-effective. Accessed 1 Sept 2021.

  66. The Detox Project. Gylphosate residue free. Available at https://detoxproject.org/certification/glyphosate-residue-free/. Accessed 1 Sept 2021.

  67. U.S. Food and Drug Administration. Questions and Answers on Glyphosate. 2021. Available at https://www.fda.gov/food/pesticides/questions-and-answers-glyphosate. Accessed 1 Sept 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley W. Bolling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasegawa, Y., Bolling, B.W. (2023). Technological Approaches to Improve Food Quality for Human Health. In: Temple, N.J., Wilson, T., Jacobs, Jr., D.R., Bray, G.A. (eds) Nutritional Health. Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-031-24663-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24663-0_28

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-24662-3

  • Online ISBN: 978-3-031-24663-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics