Skip to main content

A Survey on Human Activity Recognition Using Deep Learning Techniques and Wearable Sensor Data

  • Conference paper
  • First Online:
Machine Learning, Image Processing, Network Security and Data Sciences (MIND 2022)

Abstract

HAR has attained major attention because of its significant use in real-life scenarios like activity and fitness monitoring, rehabilitation, gaming, prosthetic limbs, healthcare, smart surveillance systems, etc. HAR systems provide ways for monitoring human behaviors and detecting body movements and various activities by using sensor data. The collection of sensors available in the mobile and other wearable devices has made most of these HAR applications easily possible. Moreover, Deep Learning (DL) has further accelerated the research on HAR using the data obtained via wearable devices. In this paper, we have discussed the overview of HAR, its applications, and popular benchmark datasets available publicly. Further, we discussed various DL techniques applied for HAR applications. We have also presented the challenges associated with the field and the future directions for performing more vital research in HAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yadav, S.K., Tiwari, K., Pandey, H.M., Akbar, S.A.: A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions. Knowl.-Based Syst. 223, 106970 (2021)

    Article  Google Scholar 

  2. Demrozi, F., Pravadelli, G., Bihorac, A., Rashidi, P.: Human activity recognition using inertial, physiological and environmental sensors: a comprehensive survey. IEEE Access 8, 210816–210836 (2020)

    Article  Google Scholar 

  3. Dawadi, P.N., Cook, D.J., Schmitter-Edgecombe, M.: Automated cognitive health assessment using smart home monitoring of complex tasks. IEEE Trans. Syst. Man Cybern. Syst. 43(6), 1302–1313 (2013)

    Article  Google Scholar 

  4. Parsey, C.M., Schmitter-Edgecombe, M.: Applications of technology in neuropsychological assessment. Clin. Neuropsychol. 27(8), 1328–1361 (2013)

    Article  Google Scholar 

  5. Yang, Q.: Activity recognition: linking low-level sensors to high-level intelligence. In: IJCAI, vol. 9, pp. 20–25, Pasadena, California (2009)

    Google Scholar 

  6. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)

    Google Scholar 

  7. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive Computing. Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1

  8. Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.: Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquit. Comput. 14(7), 645–662 (2010)

    Article  Google Scholar 

  9. Aung, M.S., et al.: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 908–916 (2013)

    Article  Google Scholar 

  10. Chaudhuri, A., Sahu, T.P.: Binary Jaya algorithm based on binary similarity measure for feature selection. J. Ambient Intell. Humaniz. Comput. 1–18 (2021)

    Google Scholar 

  11. Chaudhuri, A., Sahu, T.P.: Feature weighting for naïve Bayes using multi objective artificial bee colony algorithm. Int. J. Comput. Sci. Eng. 24(1), 74–88 (2021)

    Google Scholar 

  12. Chaudhuri, A., Sahu, T.P.: Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data. Knowl.-Based Syst. 236, 107804 (2022)

    Article  Google Scholar 

  13. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann, vol. 3, p. 3 (2013)

    Google Scholar 

  14. Feng, Z., Mo, L., Li, M.: A random forest-based ensemble method for activity recognition. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5074–5077. IEEE (2015)

    Google Scholar 

  15. Nweke, H.F., Teh, Y.W., Al-Garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018)

    Article  Google Scholar 

  16. Palla, S.R., Sahu, G., Parida, P.: Human gait recognition using firefly template segmentation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 10(5), 565–575 (2022). https://doi.org/10.1080/21681163.2021.2012829

  17. Dua, N., Singh, S.N., Semwal, V.B.: Multi-input CNN-GRU based human activity recognition using wearable sensors. Computing 103(7), 1461–1478 (2021). https://doi.org/10.1007/s00607-021-00928-8

    Article  Google Scholar 

  18. Jain, R., Semwal, V.B., Kaushik, P.: Deep ensemble learning approach for lower extremity activities recognition using wearable sensors. Expert. Syst. 39(6), e12743 (2022)

    Article  Google Scholar 

  19. Dua, N., Singh, S.N., Semwal, V.B., Challa, S.K.: Inception inspired CNN-GRU hybrid network for human activity recognition. Multimedia Tools Appl. 1–35 (2022)

    Google Scholar 

  20. Raj, M., Semwal, V.B., Nandi, G.C.: Bidirectional association of joint angle trajectories for humanoid locomotion: the restricted Boltzmann machine approach. Neural Comput. Appl. 30(6), 1747–1755 (2018)

    Article  Google Scholar 

  21. Saha, J., Chowdhury, C., Ghosh, D., Bandyopadhyay, S.: A detailed human activity transition recognition framework for grossly labeled data from smartphone accelerometer. Multimedia Tools Appl. 80(7), 9895–9916 (2020). https://doi.org/10.1007/s11042-020-10046-w

    Article  Google Scholar 

  22. Bijalwan, V., Semwal, V.B., Gupta, V.: Wearable sensor-based pattern mining for human activity recognition: deep learning approach. Ind. Robot. 49(1), 21–33 (2022). https://doi.org/10.1108/IR-09-2020-0187

  23. Asteriadis, S., Daras, P.: Landmark-based multimodal human action recognition. Multimedia Tools Appl. 76(3), 4505–4521 (2016). https://doi.org/10.1007/s11042-016-3945-6

    Article  Google Scholar 

  24. Singh, R., Kushwaha, A.K.S., Srivastava, R.: Multi-view recognition system for human activity based on multiple features for video surveillance system. Multimedia Tools Appl. 78(12), 17165–17196 (2019). https://doi.org/10.1007/s11042-018-7108-9

    Article  Google Scholar 

  25. Webber, M., Rojas, R.F.: Human activity recognition with accelerometer and gyroscope: a data fusion approach. IEEE Sens. J. 21(15), 16979–16989 (2021)

    Article  Google Scholar 

  26. Masum, A.K.M., Bahadur, E.H., Shan-A-Alahi, A., Chowdhury, M.A.U.Z., Uddin, M.R., Al Noman, A.: Human activity recognition using accelerometer, gyroscope and magnetometer sensors: deep neural network approaches. In: 2019 10Th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE, Kanpur (2019)

    Google Scholar 

  27. Ashry, S., Gomaa, W., Abdu-Aguye, M.G., El-borae, N.: Improved IMU-based human activity recognition using hierarchical hmm dissimilarity. In: Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 702–709 (2020)

    Google Scholar 

  28. Nurhanim, K., Elamvazuthi, I., Izhar, L.I., Capi, G., Su, S.: EMG signals classification on human activity recognition using machine learning algorithm. In: 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), pp. 369–373. IEEE, Hanoi, Vietnam (2021)

    Google Scholar 

  29. Ziaur Rehman, M., et al.: Multiday EMG-based classification of hand motions with deep learning techniques. Sensors 18(8), 2497 (2018)

    Google Scholar 

  30. Ding, Z., Yang, C., Tian, Z., Yi, C., Fu, Y., Jiang, F.: sEMG-based gesture recognition with convolution neural networks. Sustainability 10(6), 1865 (2018)

    Article  Google Scholar 

  31. Jia, R., Liu, B.: Human daily activity recognition by fusing accelerometer and multi-lead ECG data. In: 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), pp. 1–4. IEEE, KunMing, China (2013)

    Google Scholar 

  32. Almanifi, O.R.A., Khairuddin, I.M., Razman, M.A.M., Musa, R.M., Majeed, A.P.A.: Human activity recognition based on wrist PPG via the ensemble method. ICT Express (2022)

    Google Scholar 

  33. Zia, S., Khan, A.N., Mukhtar, M., Ali, S.E.: Human activity recognition using portable EEG sensor and support vector machine. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–6. IEEE, Istanbul, Turkey (2021)

    Google Scholar 

  34. Salehzadeh, A., Calitz, A.P., Greyling, J.: Human activity recognition using deep electroencephalography learning. Biomed. Signal Process. Control 62, 102094 (2020)

    Article  Google Scholar 

  35. Dinarević, E.C., Husić, J.B., Baraković, S.: Issues of human activity recognition in healthcare. In: 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6. IEEE, East Sarajevo (2019)

    Google Scholar 

  36. Hu, F.B., Leitzmann, M.F., Stampfer, M.J., Colditz, G.A., Willett, W.C., Rimm, E.B.: Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch. Intern. Med. 161(12), 542–1548 (2001)

    Article  Google Scholar 

  37. Schnohr, P., Lange, P., Scharling, H., Jensen, J.S.: Long-term physical activity in leisure time and mortality from coronary heart disease, stroke, respiratory diseases, and cancer. The Copenhagen City heart study. Eur. J. Prev. Cardiol. 13(2), 173–179 (2006)

    Google Scholar 

  38. Bauman, A.E., Reis, R.S., Sallis, J.F., Wells, J.C., Loos, R.J., Martin, B.W.: Correlates of physical activity: why are some people physically active and others not? The Lancet 380(9838), 258–271 (2012). Lancet Physical Activity Series Working Group

    Google Scholar 

  39. Sullivan, A.N., Lachman, M.E.: Behavior change with fitness technology in sedentary adults: a review of the evidence for increasing physical activity. Front. Public Health 4, 289 (2017)

    Article  Google Scholar 

  40. Eskofier, B.M., et al.: Recent machine learning advancements in sensor-based mobility analysis: deep learning for Parkinson’s disease assessment. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 655–658. IEEE, Orlando, USA (2016)

    Google Scholar 

  41. Zhang, S., et al.: CoughTrigger: earbuds IMU based cough detection activator using an energy-efficient sensitivity-prioritized time series classifier. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, Singapore (2022)

    Google Scholar 

  42. Meattini, R., Benatti, S., Scarcia, U., De Gregorio, D., Benini, L., Melchiorri, C.: An sEMG-based human–robot interface for robotic hands using machine learning and synergies. IEEE Trans. Compon. Packag. Manuf. Technol. 8(7), 1149–1158 (2018)

    Article  Google Scholar 

  43. Parajuli, N., et al.: Real-time EMG based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation. Sensors 19(20), 4596 (2019)

    Article  Google Scholar 

  44. Zhao, H., Ma, Y., Wang, S., Watson, A., Zhou, G.: MobiGesture: mobility-aware hand gesture recognition for healthcare. Smart Health 9, 129–143 (2018)

    Article  Google Scholar 

  45. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109. IEEE, Newcastle, UK (2012)

    Google Scholar 

  46. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  47. Banos, O., et al.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) Ambient Assisted Living and Daily Activities. IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_14

  48. Chavarriaga, R., et al.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013)

    Article  Google Scholar 

  49. Bachlin, M., et al.: Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14(2), 436–446 (2009)

    Article  Google Scholar 

  50. Ballard, D.H.: Modular learning in neural networks. In: AAAI, vol. 647, pp. 279–284, Washington, DC, USA (1987)

    Google Scholar 

  51. Li, Y., Shi, D., Ding, B., Liu, D.: Unsupervised Feature Learning for Human Activity Recognition Using Smartphone Sensors. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) Mining Intelligence and Knowledge Exploration. LNCS, vol. 8891, pp. 99–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13817-6_11

  52. Mohammadian Rad, N., Van Laarhoven, T., Furlanello, C., Marchiori, E.: Novelty detection using deep normative modeling for imu-based abnormal movement monitoring in parkinson’s disease and autism spectrum disorders. Sensors 18(10), 3533 (2018)

    Google Scholar 

  53. Malekzadeh, M., Clegg, R.G., Haddadi, H.: Replacement autoencoder: a privacy-preserving algorithm for sensory data analysis. In: 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 165–176. IEEE, Orlando, FL, USA (2018)

    Google Scholar 

  54. Jun, K., Choi, S.: Unsupervised end-to-end deep model for newborn and infant activity recognition. Sensors 20(22), 6467 (2020)

    Article  Google Scholar 

  55. Akbari, A., Jafari, R.: An autoencoder-based approach for recognizing null class in activities of daily living in-the-wild via wearable motion sensors. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3392–3396. IEEE, Brighton, UK (2019)

    Google Scholar 

  56. Khan, M.A.A.H., Roy, N.: Untran: recognizing unseen activities with unlabeled data using transfer learning. In: 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 37–47. IEEE, Orlando, FL, USA (2018)

    Google Scholar 

  57. Akbari, A., Jafari, R.: Transferring activity recognition models for new wearable sensors with deep generative domain adaptation. In: Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp. 85–96. ACM (2019)

    Google Scholar 

  58. Gao, X., Luo, H., Wang, Q., Zhao, F., Ye, L., Zhang, Y.: A human activity recognition algorithm based on stacking denoising autoencoder and lightGBM. Sensors 19(4), 947 (2019)

    Article  Google Scholar 

  59. Hung, B.T., Semwal, V.B., Gaud, N., Bijalwan, V.: Hybrid deep learning approach for aspect detection on reviews. In: Singh Mer, K.K., Semwal, V.B., Bijalwan, V., Crespo, R.G. (eds.) Proceedings of Integrated Intelligence Enable Networks and Computing. Algorithms for Intelligent Systems. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6307-6_100

  60. Ha, S., Choi, S.: Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 381–388. IEEE, Vancouver (2016)

    Google Scholar 

  61. Cheng, X., Zhang, L., Tang, Y., Liu, Y., Wu, H., He, J.: Real-time human activity recognition using conditionally parametrized convolutions on mobile and wearable devices. IEEE Sens. J. 22(6), 5889–5901 (2022)

    Article  Google Scholar 

  62. Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)

    Article  Google Scholar 

  63. Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z.: Deep learning models for real-time human activity recognition with smartphones. Mob. Netw. Appl. 25(2), 743–755 (2020)

    Article  Google Scholar 

  64. Cho, H., Yoon, S.M.: Divide and conquer-based 1D CNN human activity recognition using test data sharpening. Sensors 18(4), 1055 (2018)

    Article  Google Scholar 

  65. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  66. Zhao, Y., Yang, R., Chevalier, G., Xu, X., Zhang, Z.: Deep residual bidir-LSTM for human activity recognition using wearable sensors. Math. Probl. Eng. (2018)

    Google Scholar 

  67. Yu, S., Qin, L.: Human activity recognition with smartphone inertial sensors using bidir-lstm networks. In: 2018 3rd International Conference on Mechanical, Control and Computer Engineering (icmcce), pp. 219–224. IEEE, Huhhot, China (2018)

    Google Scholar 

  68. Ullah, M., Ullah, H., Khan, S.D., Cheikh, F.A.: Stacked LSTM network for human activity recognition using smartphone data. In: 2019 8th European Workshop on Visual Information Processing (EUVIP), pp. 175–180. IEEE, Italy (2019)

    Google Scholar 

  69. Zeng, M., et al.: Understanding and improving recurrent networks for human activity recognition by continuous attention. In Proceedings of the 2018 ACM international symposium on wearable computers, pp. 56–63. ACM, Newyork (2018)

    Google Scholar 

  70. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv preprint arXiv:1604.08880 (2016)

  71. Lyu, L., He, X., Law, Y.W., Palaniswami, M.: Privacy-preserving collaborative deep learning with application to human activity recognition. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1219–1228. ACM, Singapore (2017)

    Google Scholar 

  72. Challa, S.K., Kumar, A., Semwal, V.B.: A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data. Vis. Comput. 1–15 (2021).https://doi.org/10.1007/s00371-021-02283-3

  73. Semwal, V.B., Gupta, A., Lalwani, P.: An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition. J. Supercomput. 77(11), 12256–12279 (2021). https://doi.org/10.1007/s11227-021-03768-7

    Article  Google Scholar 

  74. Alsheikh, M.A., Selim, A., Niyato, D., Doyle, L., Lin, S., Tan, H.P.: Deep activity recognition models with triaxial accelerometers. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA (2016)

    Google Scholar 

  75. Zhang, L., Wu, X., Luo, D.: Recognizing human activities from raw accelerometer data using deep neural networks. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 865–870. IEEE, Miami, FL, USA (2015)

    Google Scholar 

  76. Radu, V., Lane, N.D., Bhattacharya, S., Mascolo, C., Marina, M.K., Kawsar, F.: Towards multimodal deep learning for activity recognition on mobile devices. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 185–188. ACM, Germany, Heidelberg (2016)

    Google Scholar 

  77. Gao, Y., et al.: iHear food: eating detection using commodity bluetooth headsets. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 163–172. IEEE, Washington, DC, USA (2016)

    Google Scholar 

  78. Ramponi, G., Protopapas, P., Brambilla, M., Janssen, R.: T-CGAN: conditional generative adversarial network for data augmentation in noisy time series with irregular sampling. arXiv preprint arXiv:1811.08295 (2018)

  79. Alzantot, M., Chakraborty, S., Srivastava, M.: Sensegen: a deep learning architecture for synthetic sensor data generation. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 188–193. IEEE, Kona, HI, USA (2017)

    Google Scholar 

  80. Wang, J., Chen, Y., Gu, Y., Xiao, Y., Pan, H.: SensoryGANs: an effective generative adversarial framework for sensor-based human activity recognition. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, Rio de Janeiro, Brazil (2018)

    Google Scholar 

  81. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069. PMLR (2016)

    Google Scholar 

  82. Zhou, Y., Wang, Z., Fang, C., Bui, T., Berg, T.L.: Visual to sound: generating natural sound for videos in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3550–3558. IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  83. Plötz, T., Guan, Y.: Deep learning for human activity recognition in mobile computing. Computer 51(5), 50–59 (2018)

    Article  Google Scholar 

  84. Abdel-Basset, M., Hawash, H., Chang, V., Chakrabortty, R.K., Ryan, M.: Deep learning for heterogeneous human activity recognition in complex iot applications. IEEE Internet Things J. 9(8), 5653–5665 (2020)

    Google Scholar 

  85. Qin, Z., Zhang, Y., Meng, S., Qin, Z., Choo, K.K.R.: Imaging and fusing time series for wearable sensor-based human activity recognition. Inf. Fusion 53, 80–87 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Dua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dua, N., Singh, S.N., Challa, S.K., Semwal, V.B., Sai Kumar, M.L.S. (2022). A Survey on Human Activity Recognition Using Deep Learning Techniques and Wearable Sensor Data. In: Khare, N., Tomar, D.S., Ahirwal, M.K., Semwal, V.B., Soni, V. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2022. Communications in Computer and Information Science, vol 1762. Springer, Cham. https://doi.org/10.1007/978-3-031-24352-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24352-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24351-6

  • Online ISBN: 978-3-031-24352-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics