Skip to main content

Desalination for Agriculture: Is It Affordable?

  • Chapter
  • First Online:
Biosaline Agriculture as a Climate Change Adaptation for Food Security

Abstract

Desalination is becoming increasingly important as a solution to the Middle East and North Africa (MENA) region’s water problem. Many water-stressed countries in MENA are increasing their water supplies with desalination to meet the needs of the continuous growth of population and industrial, tourism, and agriculture developments. Agriculture in particular is starting to benefit from desalination technologies in some regions suffering from seawater intrusion and water and soil salinization. However, desalination presents some constraints in terms of cost, energy consumption, and brine management. In addition, solar energy is the most abundant form of renewable energy and most of the MENA countries have the potential to exploit this energy form for developing solar-driven desalination processes. Thus, membrane operations driven with renewable energy can make desalination more sustainable and environment friendly. In particular, Reverse Osmosis (RO) desalination technology coupled with solar energy will supply freshwater at a competitive price and reduce the usual greenhouse impacts associated with grid electricity demand for desalination. Could desalination for agriculture become sustainable if we use renewable energies and find the right approaches to deal with the brine? This is what we try to respond to in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abouaziza FB, Daghari I, Daghari H (2021) Concentrating solar power (CSP)-desalination systems: a review. Int J Chem Mater Environ Res 08(6)

    Google Scholar 

  • Al Ansari MS (2013) Concentrating solar power to be used in seawater desalination within the Gulf Cooperation Council. Energy Environ Res 3(1):10

    Google Scholar 

  • Al Jabri SA, Zekri S, Zarzo D, Ahmed M (2019) Comparative analysis of economic and institutional aspects of desalination for agriculture in the Sultanate of Oman and Spain. Desalin Water Treat 156:1–6

    Article  Google Scholar 

  • Bales C, Kovalsky P, Fletcher J, Waite TD (2019) Low cost desalination of brackish groundwaters by capacitive deionization (CDI)–implications for irrigated agriculture. Desalination 453:37–53

    Article  CAS  Google Scholar 

  • Barraque B, Isnard L, Souriau J (2017) European urban water crisis: the management dimension. La Houille Blanche 2:27–34

    Article  Google Scholar 

  • Barron O, Ali R, Hodgson G, Smith D, Qureshi E, McFarlane E, Campos E, Zarzo D (2015) Feasibility assessment of desalination application in Australian traditional agriculture. Desalination 364:33–45

    Google Scholar 

  • Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, Bolto B, Barron O (2015) Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination 364:2–16

    Article  CAS  Google Scholar 

  • Cabrera E, Estrela T, Lora J (2019) Desalination in Spain. Past, present and future. La Houille Blanche 1:85–92

    Google Scholar 

  • Chaibi MT (2000) An overview of solar desalination for domestic and agriculture water needs in remote arid areas. Desalination 127(2):119–133

    Article  CAS  Google Scholar 

  • Daghari I, Gharbi A (2014) Modelisation by SALTMOD of leaching fraction and crops rotation as relevant tools for salinity management in the irrigated area of Dyiar Al-Hujjej, Tunisia. Int J Comput Inform Technol 03(04)

    Google Scholar 

  • Daghari I, El Zarroug MR, Muanda C, Shanak N (2020a) Best irrigation scheduling way with saline water and desalinated water: field experiments. La Houille Blanche 4:72–74

    Article  Google Scholar 

  • Daghari I, El Zarroug MR (2020b) Concepts review of solar desalination technologies for irrigation. J New Sci 71:4319–4326

    Google Scholar 

  • Daghari I, El Zarroug MR, Muanda C (2021) Feasibility of water desalination for irrigation: the case of the coastal irrigated area of Dyiar-Al-Hujjej, Tunisia. Water Supply 21(1):24–45

    Article  CAS  Google Scholar 

  • Detay M, Bersillon J-L (1996) La réalimentation artificielle des nappes profondes: faisabilité et conséquences. La Houille Blanche 4:57–61

    Article  Google Scholar 

  • El Kharraz J (2020) Desalination as an alternative to alleviate water scarcity and a climate change adaptation option in the MENA region, Konrad Adenauer Stiftung. ISBN 978-3-95721-811-7

    Google Scholar 

  • El Zarroug MR, Daghari I, Kompany JR, Muanda C, Shanak N (2020) Potential of solar desalination for irrigation in Tunisia. La Houille Blanche 2020(6):85–88

    Article  Google Scholar 

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Article  CAS  PubMed  Google Scholar 

  • Fichtner (2011) Desalination using renewable energy. MENA Regional Water Outlook

    Google Scholar 

  • GWI (2018) Desalination Markets

    Google Scholar 

  • Hipólito-Valencia BJ, Mosqueda-Jiménez FW, Barajas-Fernández J, Ponce-Ortega JM (2021) Incorporating a seawater desalination scheme in the optimal water use in agricultural activities. Agric Water Manag 244:106552

    Article  Google Scholar 

  • Hirich A, Choukr-Allah R, Nrhira A, Malki M, Bouchaou L (2016) Contribution of seawater desalination to cope with water scarcity in Souss-Massa region in Southern Morocco. In: The Souss‐Massa River Basin, Morocco. Springer, Cham, pp 213–226

    Google Scholar 

  • Hundley N (1992) The great thirst: californians and water, 1770s–1990s. University of California Press, Berkeley, CA

    Google Scholar 

  • IDA (2018) International desalination association desalination tearbook 2017–2018. IDA, Washington, DC, USA

    Google Scholar 

  • Kumar R, Ahmed M, Bhadrachari G, Thomas JP (2018) Desalination for agriculture: water quality and plant chemistry, technologies and challenges. Water Sci Technol Water Supply 18(5):1505–1517

    Article  CAS  Google Scholar 

  • Lyra DA, Ismail S, Butt KURB, Brown J (2016) Evaluating the growth performance of eleven “Salicornia bigelovii” populations under full strength seawater irrigation using multivariate analyses. Aust J Crop Sci 10(10):1429–1441

    Article  Google Scholar 

  • McCool BC, Rahardianto A, Faria J, Kovac K, Lara D, Cohen Y (2010) Feasibility of reverse osmosis desalination of brackish agricultural drainage water in the San Joaquin Valley. Desalination 261(3):240–250

    Article  CAS  Google Scholar 

  • Muanda C, Daghari I, Kompany JR, Kanzari S, Daghari H (2021) Economic analysis of reverse osmosis desalination powered by the photovoltaic system for irrigation: a case study of the semi-arid irrigated area Dyiar-Al-Hujjej, Tunisia. Desalin Water Treat 234:386–391

    Article  Google Scholar 

  • Multsch S, Grabowski D, Lüdering J, Alquwaizany AS, Lehnert K, Frede HG, Breuer L (2017) A practical planning software program for desalination in agriculture-SPARE: WATERopt. Desalination 404:121–131

    Article  CAS  Google Scholar 

  • Nayar KG (2020) Brackish water desalination for greenhouse agriculture: Comparing the costs of RO, CCRO, EDR, and monovalent-selective EDR. Desalination 475:114188

    Article  CAS  Google Scholar 

  • OWS (2018) Small desalination units for sustainable agriculture—opportunities and challenges, proceeding book of the Symposium organised by Oman Water Society (OWS) on March 5–6, 2018 in Barka, Oman

    Google Scholar 

  • Raveh E, Ben-Gal A (2018) Leveraging sustainable irrigated agriculture via desalination: evidence from a macro-data case study in Israel. Sustainability 10(4):974

    Article  Google Scholar 

  • Shaffer DL, Yip NY, Gilron J, Elimelech M (2012) Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J Membr Sci 415:1–8

    Article  Google Scholar 

  • Smith G, Block LB, Ajami N, Pombo A, Velasco-Aulcy L (2020) Trade-offs across the water-energy-food nexus: a triple bottom line sustainability assessment of desalination for agriculture in the San quintín Valley, Mexico. Environ Sci Policy 114:445–452

    Article  Google Scholar 

  • Stanley EH, Collins SM, Lottig NR, Oliver SK, Webster KE, Cheruvelil KS, Soranno PA (2019) Biases in lake water quality sampling and implications for macroscale research. Limnol Oceanogr 64(4):1572–1585

    Article  CAS  Google Scholar 

  • Suwaileh W, Johnson D, Hilal N (2019) Brackish water desalination for agriculture: assessing the performance of inorganic fertilizer draw solutions. Desalination 456:53–63

    Article  CAS  Google Scholar 

  • UNECE (2015) Water and climate change adaptation in transboundary basins: lessons learned and good practices. https://www.unece.org/fileadmin/DAM/env/water/publications/WAT_Good_practices/ece.mp.wat.45.pdf

  • Welle PD, Medellín-Azuara J, Viers JH, Mauter MS (2017) Economic and policy drivers of agricultural water desalination in California’s central valley. Agric Water Manag 194:192–203

    Article  Google Scholar 

  • Zarzo D, Campos E, Terrero P (2013) Spanish experience in desalination for agriculture. Desalin Water Treat 51(1–3):53–66

    Article  CAS  Google Scholar 

  • Zekri S, Al-Maktoumi AK, Abdalla OA, Akil J, Charabi Y (2014) Hydrogeological and economical simulations: emergency water supply for Muscat. Water Policy 16(2):340–357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jauad El Kharraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Kharraz, J., Ahmed, M., Daghari, I., Laqbaqbi, M. (2023). Desalination for Agriculture: Is It Affordable?. In: Choukr-Allah, R., Ragab, R. (eds) Biosaline Agriculture as a Climate Change Adaptation for Food Security. Springer, Cham. https://doi.org/10.1007/978-3-031-24279-3_16

Download citation

Publish with us

Policies and ethics