Skip to main content

Cave Minerals and Speleothems

  • Chapter
  • First Online:
Australian Caves and Karst Systems

Part of the book series: Cave and Karst Systems of the World ((CAKASYWO))

  • 324 Accesses

Abstract

Australian caves have an astonishing variety of cave minerals and a breathtaking range of world-class speleothems. Altogether 71 cave minerals are recorded here; of these eight were first described from Australian caves. By far the most abundant cave mineral is calcite, followed by aragonite and gypsum, and, on the Nullarbor, halite. There are 44 minerals found in Australian caves that only occur associated with guano. Australian cave minerals have been studied since the late nineteenth century, and new minerals are still being found. Calcite speleothems in Australian caves occur as four basic categories: those deposited by seeping and/or flowing water, still water, capillary water and condensation water. To interpret past climate and environmental data from calcite speleothems, the sequentially deposited layers must be dated; three main dating techniques are available, of which one, U/Pb, was developed in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Birch, W.D., S.J. Mills, K. Schwendtner, A. Pring, and J.A. Webb. 2007. Parwanite, a new hydrated Na-Mg-Al- phosphate from a lava cave at Parwan, Victoria, Australia. Australian Journal of Mineralogy 13: 23–30.

    Google Scholar 

  • Blyth, A.J., J.S. Watson, J. Woodhead, and J. Hellstrom. 2010. Organic compounds preserved in a 2.9 million year old stalagmite from the Nullarbor Plain, Australia. Chemical Geology 279: 101–105.

    Google Scholar 

  • Bridge, P.J. 1971. Analyses of altered struvite from Skipton, Victoria. Mineralogical Magazine and Journal of the Mineralogical Society 38: 381–382.

    Google Scholar 

  • Bridge, P.J. 1973a. Guano minerals from Murra-el-elevyn Cave, Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 39: 467.

    CAS  Google Scholar 

  • Bridge, P.J. 1973b. Urea, a new mineral, and neotype phosphammite from Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 39: 346–348.

    CAS  Google Scholar 

  • Bridge, P.J. 1974. Guanine and uricite, two new organic minerals from Peru and Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 39: 889–890.

    CAS  Google Scholar 

  • Bridge, P.J. 1975. Urea from Wilgie Mia Cave, WA. Western Australian Naturalist 13: 85–86.

    Google Scholar 

  • Bridge, P.J. 1977. Archerite, (K,NH4)H2PO4, a new mineral from Madura, Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 41: 33–35.

    Google Scholar 

  • Bridge, P.J., and R.M. Clarke. 1983. Mundrabillaite – a new cave mineral from Western Australia. Mineralogical Magazine and Journal of the Mineralogical Society 47: 80–81.

    CAS  Google Scholar 

  • Bridge, P.J., L.C. Hodge, N.L. Marsh, and A.G. Thomas. 1975. Chiropterite deposits in Marooba Cave, Jurien Bay, Western Australia. Helictite 13: 19–34.

    Google Scholar 

  • Bridge, P.J., M.W. Pryce, R.M. Clarke, and M.B. Costello. 1978. Sampleite from Jingemia Cave, Western Australia. Mineralogical Magazine 42: 369–371.

    CAS  Google Scholar 

  • Caldwell, J., A.G. Davey, G.N. Jennings, and A.P. Spate. 1982. Colour in some Nullarbor Plain speleothems. Helictite 20: 3–10.

    Google Scholar 

  • Contos, A.K. 2001. Biomineralisation in Caves. Unpublished PhD thesis, University of Sydney, Sydney, Australia.

    Google Scholar 

  • Contos, A.K., J.M. James, B. Heywood, K. Pitt, and P. Rogers. 2001. Morphoanalysis of bacterially precipitated subaqueous calcium carbonate from Weebubbie Cave, Australia. Geomicrobiology Journal 8: 331–343.

    Google Scholar 

  • Cox, G., J.M. James, K.E.A. Leggett, and R.A.L. Osborne. 1989. Cyanobacterially deposited speleothems: Subaerial stromatolites. Geomicrobiology Journal 7: 245–252.

    Google Scholar 

  • Eberhard, S.M. 2001. The world’s longest straw? Australasian Cave and Karst Management Association Journal 43: 1–2.

    Google Scholar 

  • Fairchild, I.J., and A. Baker. 2012. Speleothem Science: From Process to Past Environments. Wiley.

    Google Scholar 

  • Finlayson, B.L., and J.A. Webb. 1985. Amorphous Speleothems. Cave Science 12: 3–8.

    Google Scholar 

  • Ford, D.C., and P.D. Williams. 2007. Karst Hydrogeology and Geomorphology, 2nd ed. Chichester: John Wiley and Sons Ltd.

    Google Scholar 

  • Frost, R.L., M.L. Weier, W.N. Martens, D.A. Henry, and S.J. Mills. 2005. Raman spectroscopy of newberyite, hannayite and struvite. Spectrochimica Acta Part A 62: 181–188.

    Google Scholar 

  • Frost, R.L., S. Palmer, D.A. Henry, and R. Pogson. 2011a. A Raman spectroscopic study of the ‘cave’ mineral ardealite Ca2(HPO4)(SO4).4H2O. Journal of Raman Spectroscopy 42(6): 1447–1454.

    Google Scholar 

  • Frost, R.L., Y. Xi, S.J. Palmer, and R. Pogson. 2011b. Vibrational spectroscopic analysis of the mineral crandallite CaAl3(PO4)2(OH)5.(H2O) from the Jenolan Caves, Australia. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 82: 461–466.

    Google Scholar 

  • Frost, R.L., Y. Xi, S.J. Palmer, and R. Pogson. 2011c. Vibrational spectroscopic analysis of taranakite (K,NH4)Al3(PO4)3(OH).9H2O from the Jenolan Caves, Australia. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 83: 106–111.

    Google Scholar 

  • Frost, R.L., S.J. Palmer, and R. Pogson. 2011d, Raman spectroscopy of newberyite Mg(PO3OH).3H2O: A cave mineral. Spectrochimica Acta Part A 79: 1149–1153.

    Google Scholar 

  • Frost, R.L., and S.J. Palmer. 2012. Thermal stability of stercorite H(NH4)Na(PO4).4H2O: A cave mineral from Petrogale Cave, Madura, Eucla, Western Australia. Journal of Thermal Analysis and Calorimetry 107: 901–903.

    Article  CAS  Google Scholar 

  • Frost, R.L., S.J. Palmer, and R. Pogson. 2012a. Thermal stability of newberyite Mg(PO3OH).3H2O: A cave mineral from Skipton Lava Tubes, Victoria, Australia. Journal of Thermal Analysis and Calorimetry 107: 1143–1146.

    Article  CAS  Google Scholar 

  • Frost, R.L., Y. Xi, S.J. Palmer, and R. Pogson. 2012b. Identification of montgomeryite mineral (Ca4MgAl4(PO4)6(OH).12H2O) found in the Jenolan Caves, Australia. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 94: 1–5.

    Google Scholar 

  • Gascoyne, M. 1992. Geochemistry of the Actinides and their Daughters. In Uranium-series Disequilibrium, 2nd ed., ed. M. Ivanovich and R.S. Harmon, 34–55. Oxford: Clarendon Press.

    Google Scholar 

  • Goede, A., and R.S. Harmon. 1983. Radiometric dating of Tasmanian speleothems. Evidence of cave evolution and climatic change. Journal of the Geological Society of Australia 30: 89–100.

    Google Scholar 

  • Goede, A., R. Harmon, and K. Kiernan. 1979. Sea caves of King Island. Helictite 17(2): 51–64.

    Google Scholar 

  • Goede, A., R.S. Harmon, T.C. Atkinson, and P.J. Rowe. 1990. Pleistocene climatic change in southern Australia and its effect on speleothem deposition in some Nullarbor caves. Journal of Quaternary Science 5: 29–38.

    Google Scholar 

  • Goede, A., S. Harmon, T.C. Atkinson, and P.J. Rowe. 1992. A giant late Pleistocene halite speleothem from Webbs Cave, Nullarbor Plain, southeastern Western Australia. Helictite 33: 3–7.

    Google Scholar 

  • Grimes, K.G. 1978. The geology and geomorphology of the Texas Caves, Southeastern Queensland. Memoirs of the Queensland Museum 19: 17–59.

    Google Scholar 

  • Hamilton-Smith, E. 2003. People and caves: Changing perspectives. In Beneath the surface: A natural history of Australian caves, ed. B.L. Finlayson and E. Hamilton-Smith, 148–171. Sydney: University of New South Wales Press Ltd.

    Google Scholar 

  • Hamilton-Smith, E., S. Flavell, and T. Reardon. 1997. Potential wealth and great optimism: Mining bat guano in the Flinders Ranges. In Proceedings of 21st Biennial Conference of the Australian Speleological Federation Inc., Quorn, South Australia, 16–22.

    Google Scholar 

  • Hellstrom, J. 2006. U-Th dating of speleothems with high initial 230Th using stratigraphic constraint. Quaternary Geochronology 1: 289–295.

    Google Scholar 

  • Hendy, C.H. 1970. The use of 14C in the study of cave processes. In Twelfth Nobel Symposium, Radiocarbon Variations and Absolute Chronology, ed. I.U. Olsson, 419–443. New York: Wiley.

    Google Scholar 

  • Hill, C.A. 1981. Mineralogy of cave nitrates. National Speleological Society Bulletin 43: 127–132.

    CAS  Google Scholar 

  • Hill, C.A., and P. Forti. 1997. Cave Minerals of the World, 2nd ed. Huntsville, Alabama, USA: National Speleological Society.

    Google Scholar 

  • Hough, D. and E.R. Segnit. 1986. Potassium alum from Cave of Hands, Grampians, western Victoria. Australian Mineralogist 51: 310–311.

    Google Scholar 

  • Hua, Q. 2009. Radiocarbon: A chronological tool for the recent past. Quaternary Geochronology 4: 378–390.

    Google Scholar 

  • James, J.M. 1975. Cold water mineralization processes in an Australian cave. Transactions of the British Cave Research Association 2: 141–155.

    Google Scholar 

  • James, J.M. 1991. The sulfate speleothems of Thampanna Cave, Nullarbor Plain, Australia. Helictite 29: 19–23.

    Google Scholar 

  • James, J.M. 1992. Corrosion par mélange des eaux dans les grottes de la Plaine de Nullarbor. In Karst et Evolutions Climatiques, ed. J.N. Salomon and R. Marie, 333–348. Bordeaux, France: Presses Universitaires de Bordeaux.

    Google Scholar 

  • James, J.M. 1997. Minor, trace and ultra-trace constituents in speleothems. In Cave Minerals of the World, 2nd ed., ed. C. Hill and P. Forti, 236–237. Huntsville, Alabama, USA: National Speleological Society Inc.

    Google Scholar 

  • James, J.M. 2003. The crystal gallery. In Beneath the surface: A natural history of Australian caves, ed. E. Hamilton-Smith, and B. Finlayson, 53–85. University of New South Wales Press Ltd, Sydney, Australia.

    Google Scholar 

  • James, J.M. 2004. Condensation corrosion. In Encyclopedia of Caves and Karst Science, ed. J. Gunn, 240–241. New York: Fitzroy Dearborn.

    Google Scholar 

  • James, J.M., J.N. Jennings, M. Martyn, and E.J. Halbert. 1982. Investigating surface and underground water. In Wombeyan Caves, Sydney Speleological Society Occasional Paper, vol. 8, ed. H.J. Dyson, R. Ellis, and J.M. James, 65–82.

    Google Scholar 

  • James, J.M., E. Patsalides, and G.C. Cox. 1994. Amino acid composition of stromatolitic stalagmites. Geomicrobiology Journal 12: 183–194.

    CAS  Google Scholar 

  • Lipar, M., M. Ferk, S. Lojen, and M. Barham. 2019. Sulfur (34S/32S) isotope composition of gypsum and implications for deep cave formation on the Nullarbor Plain, Australia. International Journal of Speleology 48: 1–9.

    Google Scholar 

  • MacIvor, R.W. 1879. The Chemistry of Agriculture. Melbourne, Stillwell & Co., 143 p.

    Google Scholar 

  • MacIvor, R.W. 1887. On Australian bat guano and some minerals occurring therein. The Chemical News 55: 215–216.

    Google Scholar 

  • MacIvor, R.W. 1902. Further notes on minerals occurring in Australian bat guano. The Chemical News 85: 217.

    Google Scholar 

  • MacKenzie, A. 1995. Chemical Investigations into the black calcite of the Nullarbor Plain. Unpublished BSc (Hons) thesis, University of Sydney, Sydney, Australia.

    Google Scholar 

  • McQueen, K.G., J.R. Caldwell, and P.W. Millsteed. 1988. Primary and secondary minerals at the Paddy’s River Mine, Australian Capital Territory. Australian Mineralogist 3: 83–100.

    Google Scholar 

  • Matley, K.A., J.M.K. Sniderman, A.N. Drinnan, and J.C. Hellstrom. 2020. Late-Holocene environmental change on the Nullarbor Plain, southwest Australia, based on speleothem pollen records. The Holocene 30: 672–681.

    Google Scholar 

  • Mawson, D. 1930. The occurrence of potassium nitrate near Goyder Pass, McDonell Ranges, Central Australia. Mineralogical Magazine 22: 231–237.

    Google Scholar 

  • Mingaye, J.H. 1898. On the occurrence of phosphate deposits in Jenolan Caves, New South Wales. Australasian Association for the Advancement of Science, Report 5: 423–425.

    Google Scholar 

  • Moore, G.W. 1952. Speleothem—a new cave term. National Speleological Society News 10: 2.

    Google Scholar 

  • Morwood, M. 2002. Visions from the Past: The Archaeology of Australian Aboriginal Art. Sydney, Australia: Allen and Unwin.

    Google Scholar 

  • Onac, B.P. 2005. Minerals. In Encyclopedia of Caves, ed. D.C. Culver and W.H. White, 371–378. New York: Academic Press.

    Google Scholar 

  • Osborne, R.A.L., H. Zwingmann, R. Pogson, and D. Colchester. 2006. Carboniferous clay deposits from Jenolan Caves, New South Wales: Implications for timing of speleogenesis and regional geology. Australian Journal of Earth Sciences 53: 377–405.

    CAS  Google Scholar 

  • Palmer, A.N. 2007. Cave Geology. Dayton, Ohio: Cave Books.

    Google Scholar 

  • Pilkington, E.S., and E.R. Segnit. 1980. Taranakite from the Skipton caves, Victoria, Australia. Australian Gems and Crafts Magazine 45: 141–142.

    Google Scholar 

  • Pogson, R.E., R.A.L. Osborne, and D.M. Colchester. 2014. Minerals of Jenolan Caves, New South Wales, Australia: Geological and biological interactions. Proceedings of the Linnean Society of New South Wales 136: 1–18.

    Google Scholar 

  • Pryce, M.W. 1972. Biphosphammite: A second occurrence. Mineralogical Magazine 38: 965–967.

    Google Scholar 

  • Sniderman, J.M.K., J.D. Woodhead, J. Hellstrom, G.J. Jordan, R.N. Drysdale, J.J. Tyler, and N. Porch. 2016. Pliocene reversal of late Neogene aridification. Proceedings of the National Academy of Sciences 113: 1999–2004.

    Google Scholar 

  • Snow, M.R., A. Pring, and N. Allen. 2014. Minerals of the Wooltana Cave, Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 138: 214–230.

    Google Scholar 

  • Suess, H.E. 1986. Secular variations of cosmogenic 14C on Earth: Their discovery and interpretation. Radiocarbon 28: 259–265.

    CAS  Google Scholar 

  • Treble, P.C., J. Chappell, M.K. Gagan, K.D. McKeegan, and T.M. Harrison. 2005. In situ measurement of seasonal delta O18 variations and analysis of isotopic trends in a modem speleothem from southwest Australia. Earth and Planetary Science Letters 233: 17–32.

    CAS  Google Scholar 

  • Vince, D., P. Hall, and W. Birch. 1993. Phosphate minerals in cave deposits. In Phosphate Minerals of Victoria, Mineralogical Society of Victoria Special Publication, vol. 3, ed. W.D. Birch, and D.A. Henry, 121–151.

    Google Scholar 

  • Vom Rath, M.G. 1879. Sitzungberichte der Niederrheinischen Gesellschaft in Bonn, 13 January, 1879: 5–8.

    Google Scholar 

  • Webb, J.A. 1979. Morphology and origin of Holy Jump Lava Cave, south-eastern Queensland. Helictite 17: 65–74.

    Google Scholar 

  • Webb, J.A. 1985. Acicular opaline speleothems from Mount Hamilton lava cave, western Victoria. Australian Mineralogist 37: 291–294.

    Google Scholar 

  • Webb, J.A. 1986. Cave minerals in Victoria. Nargun 19: 10–15.

    Google Scholar 

  • Webb, J.A. 1987. More cave minerals from Buchan. Nargun 20: 29.

    Google Scholar 

  • Webb, J.A. 1997. Skipton Lava Cave. In Cave Minerals of the World, 2nd ed., ed. C. Hill and P. Forti, 331–335. Huntsville, Alabama, USA: National Speleological Society Inc.

    Google Scholar 

  • Webb, J.A., and B.L. Finlayson. 1984. Allophane and opal speleothems from granite caves in south-east Queensland. Australian Journal of Earth Sciences 31: 341–349.

    CAS  Google Scholar 

  • Webb, J.A., and B.L. Finlayson. 1987. Incorporation of Al, Mg and water in opal-A: Evidence from opal speleothems. American Mineralogist 72: 1204–1210.

    CAS  Google Scholar 

  • Woodhead, J., J. Hellstrom, and R. Maas. 2006. U-Pb geochronology of speleothems by MC-ICPMS. Quaternary Geochronology 1: 208–221.

    Google Scholar 

  • Woodhead, J., J.M.K. Sniderman, J. Hellstrom, R.N. Drysdale, R. Maas, N. White, S. White, and P. Devine. 2019. The antiquity of Nullarbor speleothems and implications for karst palaeoclimate archives. Scientific Report 9: 603.

    Google Scholar 

  • Woodward, H.P. 1914. A geological reconnaissance of a portion of the Murchison goldfield. Bulletin of the Geological Survey of Western Australia 57: 1–103.

    Google Scholar 

  • Wray, R.A.L. 1997. The formation and significance of coralline silica speleothems in the Sydney Basin, southeastern Australia. Physical Geography 18: 1–16.

    Google Scholar 

  • Wray, R.A.L. 1999. Opal and chalcedony speleothems on quartz sandstones in the Sydney region, southeastern Australia. Australian Journal of Earth Sciences 46 (4): 623–632.

    Google Scholar 

  • Wray, R.A.L. 2011. Alunite formation within silica stalactites from the Sydney Region, South-Eastern Australia. International Journal of Speleology 40: 109–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, J.M., Webb, J.A. (2023). Cave Minerals and Speleothems. In: Webb, J., White, S., Smith, G.K. (eds) Australian Caves and Karst Systems. Cave and Karst Systems of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-24267-0_19

Download citation

Publish with us

Policies and ethics