Skip to main content

Asymptotic Theory of Generalised Rayleigh Beams and the Dynamic Coupling

  • Conference paper
  • First Online:
Mechanics of High-Contrast Elastic Solids

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 187))

  • 187 Accesses

Abstract

We consider the effective dynamic response of an infinite asymmetric structure formed from a beam attached to a periodic array of resonators. The array couples the axial and flexural motions of the beam. We develop a point-wise description of the response of the system and demonstrate that when the separation of the resonators is small, the structure is approximated by the generalised Rayleigh beam: a beam attached to an elastic resonant layer that engages flexural-longitudinal wave coupling. The passage to the effective model utilises a dynamic homogenisation based on the method of meso-scale approximations, whose efficiency is not limited to the typical low-frequency regime of usual homogenisation approaches. The dispersion properties of this effective system are completely characterised and we illustrate the multi-coupling of waves through the analysis of Green’s matrix of this flexural system, which is constructed in the explicit form. The analytical results are also accompanied by illustrative numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakhvalov N, Panasenko G (1989) Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials. Mathematics and its applications series. Springer, Dordrecht

    MATH  Google Scholar 

  2. Sanchez-Palencia E (1980) Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  3. Marchenko VA, Khruslov YE (2006) Homogenization of partial differential equations. Progress in mathematical physics. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  4. Craster RV, Kaplunov J, Pichugin AV (2010) High-frequency homogenization for periodic media. Proc R Soc A 466:2341–2362

    Google Scholar 

  5. Nolde E, Craster RV, Kaplunov J (2011) High frequency homogenization for structural mechanics. J Mech Phys Solids 59(3):651–671

    Article  MathSciNet  MATH  Google Scholar 

  6. Craster RV, Kaplunov J, Nolde E, Guenneau S (2011) High-frequency homogenization for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction. JOSA A 28(6):1032–1040

    Article  Google Scholar 

  7. Craster RV, Kaplunov J, Nolde E, Guenneau S (2012) Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. Wave Motion 49(2):333–346

    Article  MathSciNet  MATH  Google Scholar 

  8. Brun M, Giaccu GF, Movchan AB, Movchan NV (2012) Asymptotics of eigenfrequencies in the dynamic response of elongated multi-structures. Proc. R. Soc. Lond. A 468:378–394

    MathSciNet  MATH  Google Scholar 

  9. Carta G, Giaccu GF, Brun M (2017) A phononic band gap model for long bridges. The ‘Brabau’ bridge case. Eng Struct 140:66–76

    Article  Google Scholar 

  10. Kurze J (1997) Refined calculations or improved understanding of rail vibrations. Acta Acust 83:506–515

    MATH  Google Scholar 

  11. Nordborg A (1998) Vertical rail vibrations: point force excitation. Acta Acust 84:280–288

    Google Scholar 

  12. Hamat J-F (1999) Railway noise: use of the Timoshenko model in rail vibration studies. Acta Acust 85:54–62

    Google Scholar 

  13. Cherkaev A, Ryvkin M (2019) Damage propagation in 2d beam lattices: 1. Uncertainty and assumptions. Arch Appl Mech 89:485–501

    Article  Google Scholar 

  14. Cherkaev A, Ryvkin M (2019) Damage propagation in 2d beam lattices: 2. Design of an isotropic fault-tolerant lattice. Arch Appl Mech 89:503–519

    Article  Google Scholar 

  15. Brun M, Movchan AB, Slepyan LI (2013) Transition wave in a supported heavy beam. J Mech Phys Solids 61(10):2067–2085

    Article  MathSciNet  Google Scholar 

  16. Brun M, Giaccu GF, Movchan AB, Slepyan LI (2014) Transition wave in the collapse of the San Saba bridge. Front Mater 1:12

    Article  Google Scholar 

  17. Nieves MJ, Mishuris GS, Slepyan LI (2016) Transient wave in a transformable periodic flexural structure. Int J Solids Struct 112:185–208

    Article  Google Scholar 

  18. Nieves MJ, Mishuris GS, Slepyan LI (2016) Analysis of dynamic damage propagation in discrete beam structures. Int J Solids Struct 97–98:699–713

    Article  Google Scholar 

  19. Heckl M (2002) Coupled waves on a periodically supported beam. J Sound Vib 252(5):849–882

    Article  MATH  Google Scholar 

  20. Iqbal M, Jaya MM, Bursi OS, Kumar A, Ceravolo R (2020) Flexural band gaps and response attenuation of periodic piping systems enhanced with localized and distributed resonators. Sci Rep 10:85

    Article  Google Scholar 

  21. Bordiga G, Cabras L, Piccolroaz A, Bigoni D (2019) Prestress tuning of negative refraction and wave channeling from flexural sources. Appl Phys Lett 114:041901

    Article  Google Scholar 

  22. Colquitt DJ, Jones IS, Movchan NV, Movchan AB (2011) Dispersion and localization of elastic waves in materials with microstructure. Proc R Soc A 467:2874–2895

    Article  MathSciNet  MATH  Google Scholar 

  23. Bordiga G, Cabras L, Bigoni D, Piccolroaz A (2019) Free and forced wave propagation in a Rayleigh-beam grid: flat bands, dirac cones, and vibration localization versus isotropization. Int J Solids Struct 161:64–81

    Article  Google Scholar 

  24. Madine KH, Colquitt DJ (2021) Dynamic Green’s functions in discrete flexural systems. Quart. J Mech Appl Math 74(3):323–350

    Google Scholar 

  25. Piccolroaz A, Movchan AB, Cabras L (2017) Rotational inertia interface in a dynamic lattice of flexural beams. Int J Solids Struct 112:43–53

    Article  Google Scholar 

  26. Nieves MJ, Carta G, Pagneux V, Brun M (2020) Rayleigh waves in micro-structured elastic systems: non-reciprocity and energy symmetry breaking. Int J Eng Sci 156:103365

    Article  MathSciNet  MATH  Google Scholar 

  27. Garau M, Carta G, Nieves MJ, Jones IS, Movchan NV, Movchan AB (2018) Interfacial waveforms in chiral lattices with gyroscopic spinners. Proc R Soc Lond A 474:20180132

    MathSciNet  MATH  Google Scholar 

  28. Carta G, Jones IS, Movchan NV, Movchan AB, Nieves MJ (2017) “Deflecting elastic prism" and unidirectional localisation for waves in chiral elastic systems. Sci Rep 7:26

    Google Scholar 

  29. Carta G, Cabras L, Brun M (2016) Continuous and discrete microstructured materials with null Poisson’s ratio. J Eur Cera Soc 36(9):2183–2192

    Article  Google Scholar 

  30. Berinskii IE (2018) In-plane elastic properties of auxetic multilattices. Smart Mater Struct 27(7):075012

    Article  Google Scholar 

  31. Morvaridi M, Carta G, Bosia F, Gliozzi AS, Pugno NM, Misseroni D, Brun M (2021) Hierarchical auxetic and isotropic porous medium with extremely negative Poisson’s ratio. Extreme Mech Lett 48:101405

    Article  Google Scholar 

  32. Cabras L, Brun M, Misseroni D (2019) Micro-structured medium with large isotropic negative thermal expansion. Proc R Soc 475(2232):20190468

    Article  MathSciNet  MATH  Google Scholar 

  33. Piccolroaz A, Movchan AB (2014) Dispersion and localisation in structured Rayleigh beams. Int J Solids Struct 25–26:4452–4461

    Article  Google Scholar 

  34. Graff KF (1975) Micromechanics of materials, with applications. Oxford University Press, Oxford

    Google Scholar 

  35. Nieves MJ, Brun M (2019) Dynamic characterization of a periodic microstructured flexural system with rotational inertia. Philos T R Soc A 377(2156):20190113

    Article  MathSciNet  MATH  Google Scholar 

  36. Slepyan LI, Ayzenberg-Stenenko M, Mishuris G (2015) Forerunning mode transition in a continuous waveguide. J Mech Phys Solids 78:32–45

    Article  MathSciNet  MATH  Google Scholar 

  37. Nieves M, Movchan A (2022) Meso-scale method of asymptotic analysis of elastic vibrations in periodic and non-periodic multi-structures. Q J Mech Appl Math 75(3):171–214

    Article  MathSciNet  MATH  Google Scholar 

  38. Maz’ya V, Movchan A, Nieves M (2013) Green’s kernels and meso-scale approximations in perforated domains. Lecture notes in mathematics. Springer Cham

    Google Scholar 

  39. Maz’ya V, Movchan A (2010) Asymptotic treatment of perforated domains without homogenization. Math Nach 283(1):104–125

    Article  MathSciNet  MATH  Google Scholar 

  40. Maz’ya V, Movchan A, Nieves M (2011) Mesoscale asymptotic approximations to solutions of mixed boundary value problems in perforated domains. Multiscale Model Simul 9(1):424–448

    Article  MathSciNet  MATH  Google Scholar 

  41. Nieves MJ (2017) Asymptotic analysis of solutions to transmission problems in solids with many inclusions. SIAM J Appl Math 77(4):1417–1443

    Article  MathSciNet  MATH  Google Scholar 

  42. Maz’ya VG, Movchan AB, Nieves MJ (2014) Mesoscale approximations for solutions of the Dirichlet problem in a perforated elastic body. J Math Sci (NY) 202(2):215–244

    Google Scholar 

  43. Maz’ya VG, Movchan AB, Nieves MJ (2016) Mesoscale models and approximate solutions for solids containing clouds of voids. Multiscale Model Simul 14(1):138–172

    Article  MathSciNet  MATH  Google Scholar 

  44. Maz’ya VG, Movchan AB, Nieves MJ (2017) Eigenvalue problem in a solid with many inclusions: asymptotic analysis. Multiscale Model Simul 15(2):1003–1047

    Article  MathSciNet  Google Scholar 

  45. Maz’ya VG, Movchan AB, Nieves MJ (2020) On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions. Algebra i Analiz, 3:219–237

    MATH  Google Scholar 

  46. Mead DJ (1975) Wave propagation and natural modes in periodic systems II: multi-coupled systems with and without damping. J Sound Vib 40(1):19–39

    Article  MATH  Google Scholar 

  47. Mead DJ, Markuš Š (1983) Coupled flexural-longitudinal wave motion in a periodic beam. J Sound Vib 90(1):1–24

    Article  MATH  Google Scholar 

  48. Friis L, Ohlrich M (2005) Coupling of flexural and longitudinal wave motion in a periodic structure with asymmetrically arranged transverse beams. J Acoust Soc Am 118:3010

    Article  Google Scholar 

  49. Yun Y, Mak CM (2009) A study of coupled flexural-longitudinal wave motion in a periodic dual-beam structure with transverse connection. J Acoust Soc Am 126:114

    Article  Google Scholar 

  50. Yun Y, Mak CM (2011) Experimental study of coupled vibration in a finite periodic dual-layered structure with transverse connection. Appl Acoust 72:287–296

    Article  Google Scholar 

  51. Colombi A, Colquitt D, Roux P, Guenneau S, Craster RV (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6:27717

    Article  Google Scholar 

  52. Colombi A, Roux P, Guenneau S, Gueguen P, Craster RV (2016) Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci Rep 6:19238

    Article  Google Scholar 

  53. Xiao Y, Wen J, Wen X (2012) Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. J Phys D: Appl Phys 45(19):195401

    Article  Google Scholar 

  54. Haslinger SG, Movchan NV, Movchan AB, Jones IS, Craster RV (2017) Controlling flexural waves in semi-infinite platonic crystals with resonator-type scatterers. Quart J Mech Appl Math 70(3):216–247

    Article  MathSciNet  MATH  Google Scholar 

  55. Marigo J-J, Pham K, Maurel A, Guenneau S (2020) Effective model for elastic waves propagating in a substrate supporting a dense array of plates/beams with flexural resonances. J Mech Phys Solids 143:104029

    Article  MathSciNet  MATH  Google Scholar 

  56. Slepyan LI (2002) Models and phenomena in fracture mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgements

M.J.N gratefully acknowledges the support of the EU H2020 grant MSCA-RISE-2020-101008140-EffectFact.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Nieves .

Editor information

Editors and Affiliations

Appendix A: Resonance Modes

Appendix A: Resonance Modes

Here we discuss the response of the generalised Rayleigh beam at the resonant frequencies (11.25).

Resonant Response at \(\omega _L\)

Here \(\omega _L\) corresponds to the longitudinal resonance of the medium atop the lateral beam. When \(\omega _L\) is distinct from \(\omega ^{\pm }_F\), the system (11.1) and (11.2) implies \(V(x)=0\) and the longitudinal displacement obeys

$$\begin{aligned}(\rho A +\varPsi _{\text {eff}}(\omega _L) )\omega _L^2U(x)+EA U^{\prime \prime }(x)=0\;,\end{aligned}$$

for \(-\infty<x<\infty \). Its solution is standard and given as

$$\begin{aligned}U(x)={A}\sin \left( \sqrt{\frac{\rho A +\varPsi _{\text {eff}}(\omega _L) }{EA}}\omega _L x\right) +B\cos \left( \sqrt{\frac{\rho A +\varPsi _{\text {eff}}(\omega _L) }{EA}}\omega _Lx\right) \;,\end{aligned}$$

where A and B are arbitrary constants. Hence in this resonance regime, flexural deformations of the system are not supported, whereas longitudinal waves can propagate through the medium.

Resonant Response at \(\omega _F^{\pm }\)

The frequency \(\omega _F^{\pm }\) represents the flexural resonant response of the layer atop the beam. If this is distinct from \(\omega _L\), one has at this frequency that U(x) and V(x) satisfy

$$\begin{aligned}\varPsi ^*_{\text {eff}}(\omega ^*) U({x})+\varPi ^*_{\text {eff}}(\omega ^*) V^\prime ({x})=0\end{aligned}$$
$$\begin{aligned}{-}\varPi ^*_{\text {eff}}(\omega ^*)U^{\prime }({x}) +\varUpsilon ^*_{\text {eff}}(\omega ^*) V^{\prime \prime }({x})=0\end{aligned}$$

where \(\omega =\omega ^{\pm }_F\) and the notation \(Q^*(\omega ^*)\) represents

$$\begin{aligned}Q^*(\omega ^*)=\lim _{\omega \rightarrow \omega ^*}(\omega -\omega ^*)Q(\omega )\;.\end{aligned}$$

This previous system admits the solution:

$$\begin{aligned}U(x)=-\frac{A\varPi ^*_{\text {eff}}(\omega ^*)}{\varPsi ^*_{\text {eff}}(\omega ^*)}\;, \qquad V(x)=A x +B\end{aligned}$$

where A and B are arbitrary constants, provided

$$\begin{aligned}\varPsi ^*_{\text {eff}}(\omega ^*)\varUpsilon ^*_{\text {eff}}(\omega ^*)+(\varPi ^*_{\text {eff}}(\omega ^*) )^2\ne 0\;.\end{aligned}$$

The result suggests at this resonance frequency the flexural displacement is linear and this is accompanied by a constant axial deformation.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nieves, M.J., Movchan, A.B. (2023). Asymptotic Theory of Generalised Rayleigh Beams and the Dynamic Coupling. In: Altenbach, H., Prikazchikov, D., Nobili, A. (eds) Mechanics of High-Contrast Elastic Solids. Advanced Structured Materials, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-031-24141-3_11

Download citation

Publish with us

Policies and ethics