Skip to main content

Anaerobic Biotechnology: Implementations and New Advances

  • Chapter
  • First Online:
Modern Approaches in Waste Bioremediation

Abstract

Anaerobic technology has gained widespread acceptance in environmental sustainability as a low-cost alternative for pollution control. The anaerobic technologies for contaminants treatment have three essential returns, i.e., bioenergy recovery, energy-saving and low sludge production. Therefore, the anaerobic process will be the favored green treatment technology for a sustainable environment in years to come. Currently, anaerobic treatment remains to flourish in several features, such as reactors development, bio-hythane production, molecular techniques for microbial studies and kinetic modeling and extending applications to a wide range of waste and wastewater effluents. Therefore, this chapter brings together the most up-to-date information on the new developments in anaerobic technology. Also, it sheds light on the current conversion methods and technologies for energy recovery with a focus on the use of natural materials as sustainable and environmentally friendly sources for creating new materials used in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah N, Yusof N, Lau W, Jaafar J, Ismail A (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies, 76:17–38

    Google Scholar 

  • Ahamed MI, Asiri AM, Lichtfouse E (2019) Nanophotocatalysis and environmental applications: energy conversion and chemical transformations, vol 31. Springer

    Google Scholar 

  • Ali SS, Al-Tohamy R, Manni A, Luz FC, Elsamahy T, Sun J (2019) Enhanced digestion of bio-pretreated sawdust using a novel bacterial consortium: microbial community structure and methane-producing pathways. Fuel 254:115604

    Article  CAS  Google Scholar 

  • Amor C, Marchão L, Lucas MS, Peres JA (2019) Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: a review. Water 11(2):205

    Article  CAS  Google Scholar 

  • Balachandar G, Varanasi JL, Singh V, Singh H, Das D (2020) Biological hydrogen production via dark fermentation: a holistic approach from lab-scale to pilot-scale. Int J Hydrogen Energy 45(8):5202–5215

    Article  CAS  Google Scholar 

  • Bello MM, Raman AA, Asghar A (2019) A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf Environ Prot 126:119–140

    Google Scholar 

  • Bui X-T, Chiemchaisri C, Fujioka T, Varjani S (2019) Water and wastewater treatment technologies. Springer

    Book  Google Scholar 

  • Cheremisinoff NP (2001) Handbook of water and wastewater treatment technologies. Butterworth-Heinemann

    Google Scholar 

  • Chin HL, Chen ZS, Chou CP (2003) Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19(2):383–388

    Article  CAS  Google Scholar 

  • Collet C, Adler N, Schwitzguébel J-P, Péringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 29(14):1479–1485

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley

    Google Scholar 

  • Farooq R, Ahmad Z (2017) Physico-chemical wastewater treatment and resource recovery. BoD–Books on Demanz

    Google Scholar 

  • Foteinis S, Borthwick AG, Frontistis Z, Mantzavinos D, Chatzisymeon E (2018) Environmental sustainability of light-driven processes for wastewater treatment applications. J Clean Prod 182:8–15

    Article  CAS  Google Scholar 

  • Gadow SI, Li Y-Y (2020a) Efficient treatment of recalcitrant textile wastewater using two-phase mesophilic anaerobic process: bio-hythane production and decolorization improvements. J Mater Cycles Waste Manage 22(2):515–523

    Article  CAS  Google Scholar 

  • Gadow S, Li Y-Y, Liu Y (2012) Effect of temperature on continuous hydrogen production of cellulose. Int J Hydrogen Energy 37(20):15465–15472

    Article  CAS  Google Scholar 

  • Gadow SI, Jiang H, Hojo T, Li Y-Y (2013a) Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor. Int J Hydrogen Energy 38(18):7259–7267

    Article  CAS  Google Scholar 

  • Gadow SI, Jiang H, Watanabe R, Li Y-Y (2013b) Effect of temperature and temperature shock on the stability of continuous cellulosic-hydrogen fermentation. Biores Technol 142:304–311

    Article  CAS  Google Scholar 

  • Gadow SI, Jiang H, Li Y-Y (2016) Characterization and potential of three temperature ranges for hydrogen fermentation of cellulose by means of activity test and 16s rRNA sequence analysis. Biores Technol 209:80–89

    Article  CAS  Google Scholar 

  • Gadow SI, El-Shawadfy M, Abd El Zaher FH (2019a) Optimized operational parameters of anaerobic cellulosic-wastewater treatment for bioenergy recovery and effluent quality improvements. Curr Sci Int 8(4):789–801

    Google Scholar 

  • Gadow SI, Ahsan HM, Li Y-Y (2019b) Continuous detoxification of carcinogenic aromatic amines by activated sludge treatment. Int J Environ 8(3):162–170

    Google Scholar 

  • Gadow SI, Li Y-Y (2019) Optimization of energy recovery from cellulosic wastewater using mesophilic single-stage bioreactor. Waste Biomass Valorizat, 1–7

    Google Scholar 

  • Gadow SI, Li Y-Y (2020b) Development of an integrated anaerobic/aerobic bioreactor for biodegradation of recalcitrant azo dye and bioenergy recovery: HRT effects and functional resilience. Bioresour Technol Rep 100388

    Google Scholar 

  • Habets LH, de Boerstraat T (1999). Introduction of the IC reactor in the paper industry. Technical Report, PaquesBV, Netherlands, p 7

    Google Scholar 

  • Hao L, Zhou X, Liu J (2020) Release of ZrO2 nanoparticles from ZrO2/Polymer nanocomposite in wastewater treatment processes. J Environ Sci 91:85–91

    Google Scholar 

  • Hernando M, Rodríguez A, Vaquero J, Fernández-Alba A, García E (2011) Environmental risk assessment of emerging pollutants in water: approaches under horizontal and vertical EU legislation. Crit Rev Environ Sci Technol 41(7):699–731

    Article  Google Scholar 

  • Ho Y-C, Chua S-C, Chong F-K (2020) Coagulation-flocculation technology in water and wastewater treatment. In: Handbook of research on resource management for pollution and waste treatment. IGI Global, pp 432–457

    Google Scholar 

  • Hou L, Ji D, Zang L (2018) Inhibition of anaerobic biological treatment: a review. In: IOP conference series: earth and environmental science, vol 1. IOP Publishing, p 012006

    Google Scholar 

  • Hsien C, Low JSC, Chung SY, Tan DZL (2019) Quality-based water and wastewater classification for waste-to-resource matching. Resour Conserv Recycl 151:104477

    Article  Google Scholar 

  • Hussy I, Hawkes F, Dinsdale R, Hawkes D (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84(6):619–626

    Article  CAS  Google Scholar 

  • Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111(3):297–309

    Article  CAS  Google Scholar 

  • Jiang H, Qin Y, Gadow S, Ohnishi A, Fujimoto N, Li Y-Y (2018) Bio-hythane production from cassava residue by two-stage fermentative process with recirculation. Biores Technol 247:769–775

    Article  CAS  Google Scholar 

  • Jiang H, Qin Y, Gadow S, Li Y-Y (2017) The performance and kinetic characterization of the three metabolic reactions in the thermophilic hydrogen and acidic fermentation of cassava residue. Int J Hydrogen Energy 42(5):2868–2877

    Google Scholar 

  • Kamyab S, Ataei SA, Tabatabaee M, Mirhosseinei SA (2019) Optimization of bio-hydrogen production in dark fermentation using activated sludge and date syrup as inexpensive substrate. Int J Green Energy 16(10):763–769

    Article  CAS  Google Scholar 

  • Kaparaju P, Serrano M, Angelidaki I (2010) Optimization of biogas production from wheat straw stillage in UASB reactor. Appl Energy 87(12):3779–3783

    Article  CAS  Google Scholar 

  • Khan M, Ngo HH, Guo W, Liu Y, Nghiem LD, Hai FI, Deng L, Wang J, Wu Y (2016) Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Biores Technol 219:738–748

    Article  CAS  Google Scholar 

  • Kim S-H, Han S-K, Shin H-S (2006) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 41(1):199–207

    Article  CAS  Google Scholar 

  • Kong Z, Li L, Li Y-Y (2019) Long-term performance of UASB in treating N, N-dimethylformamide-containing wastewater with a rapid start-up by inoculating mixed sludge. Sci Total Environ 648:1141–1150

    Article  CAS  Google Scholar 

  • Krishnan S, Din MFM, Taib SM, Ling YE, Puteh H, Mishra P, Nasrullah M, Sakinah M, Wahid ZA, Rana S (2019) Process constraints in sustainable bio-hythane production from wastewater. Bioresource Technology Reports 5:359–363

    Article  Google Scholar 

  • Li L, Zhou Q, Geng F, Wang Y, Jiang G (2016) Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe (II, III) redox cycling. Environ Sci Technol 50(24):13342–13350

    Article  CAS  Google Scholar 

  • Li Y-Y, Gadow S, Niu Q (2015) Biomass energy using methane and hydrogen from waste materials. In: Topical themes in energy and resources. Springer, pp 131–157

    Google Scholar 

  • Lim J, Zhou Y, Vadivelu V (2020) Enhanced volatile fatty acid production and microbial population analysis in anaerobic treatment of high strength wastewater. J Water Process Eng 33:101058

    Article  Google Scholar 

  • Luo J, Zhang Q, Zhao J, Wu Y, Wu L, Li H, Tang M, Sun Y, Wen G, Feng Q (2019) Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: a review. J Hazard Mater 121176

    Google Scholar 

  • Meky N, Ibrahim MG, Fujii M, Elreedy A (2020) Integrated dark-photo fermentative hydrogen production from synthetic gelatinaceous wastewater via cost-effective hybrid reactor at ambient temperature. Energy Convers Manage 203:112250

    Article  CAS  Google Scholar 

  • Miralles-Wilhelm F, Hejazi M, Kim S, Yonkofski C, Watson D, Kyle P, Liu Y, Vernon C, Delgado A, Edmonds J (2018) Water for food and energy security: an assessment of the impacts of water scarcity on agricultural production and electricity generation in the middle east and North Africa. World Bank

    Google Scholar 

  • Patel N, Khan M, Shahane S, Rai D, Chauhan D, Kant C, Chaudhary V (2020) Emerging Pollutants in aquatic environment: source, effect, and challenges in biomonitoring and bioremediation—a review. Pollution 6(1):99–113

    CAS  Google Scholar 

  • Ramos LR, de Menezes CA, Soares LA, Sakamoto IK, Varesche MBA, Silva EL (2019) Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT. Bioprocess Biosyst Eng 1–12

    Google Scholar 

  • Ren N, Gong M (2006) Acclimation strategy of a biohydrogen producing population in a continuous-flow reactor with carbohydrate fermentation. Eng Life Sci 6(4):403–409

    Article  CAS  Google Scholar 

  • Sawers R (2005) Formate and its role in hydrogen production in Escherichia coli. Portland Press Ltd.

    Book  Google Scholar 

  • Shah MP (2020) Microbial bioremediation & biodegradation. Springer

    Book  Google Scholar 

  • Shah MP (2021) Removal of refractory pollutants from wastewater treatment plants. CRC Press

    Book  Google Scholar 

  • Shareef N (2020) Thermal sewage sludge disposal in stationary fluidized bed combustion DN 400 by using fuel BRAM (Fuel from Solid Waste). In: Waste management in MENA regions. Springer, pp 259–279

    Google Scholar 

  • Shi J, Han Y, Xu C, Han H (2019) Anaerobic bioaugmentation hydrolysis of selected nitrogen heterocyclic compound in coal gasification wastewater. Biores Technol 278:223–230

    Article  CAS  Google Scholar 

  • Shukla N, Sahoo D, Remya N (2019) Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J Clean Prod 235:1073–1079

    Article  CAS  Google Scholar 

  • Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew Sustain Energy Rev 117:109484

    Article  CAS  Google Scholar 

  • Stams AJ (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66(1–3):271–294

    Article  CAS  Google Scholar 

  • Stazi V, Tomei MC (2018) Enhancing anaerobic treatment of domestic wastewater: state of the art, innovative technologies and future perspectives. Sci Total Environ 635:78–91

    Article  CAS  Google Scholar 

  • Thanos D, Maragkaki A, Venieri D, Fountoulakis M, Manios T (2020) Enhanced biogas production in pilot digesters treating a mixture of olive mill wastewater and agro-industrial or agro-livestock by-products in Greece. Waste Biomass Valorizat 1–9

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100

    Article  CAS  Google Scholar 

  • Xiong W, Wang L, Zhou N, Fan A, Wang S, Su H (2020) High-strength anaerobic digestion wastewater treatment by aerobic granular sludge in a step-by-step strategy. J Environ Manage 262:110245

    Article  CAS  Google Scholar 

  • Yi H, Li M, Huo X, Zeng G, Lai C, Huang D, An Z, Qin L, Liu X, Li B (2020) Recent development of advanced biotechnology for wastewater treatment. Crit Rev Biotechnol 40(1):99–118

    Article  CAS  Google Scholar 

  • Zăbavă B, Gh V, Ungureanu N, Dincă M, Ferdes M, Vlăduț V (2019) Advanced technologies for wastewater treatment by ozonation—a review. Ann Fac Eng Hunedoara-Int J Eng 17(3)

    Google Scholar 

  • Zhang H, Bruns MA, Logan BE (2006) Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res 40(4):728–734

    Article  CAS  Google Scholar 

  • Zhang B, Shan C, Hao Z, Liu J, Wu B, Pan B (2019) Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: molecular composition correlated with spectral indexes and acute toxicity. Water Res 157:472–482

    Article  CAS  Google Scholar 

  • Zhao W, Su X, Xia D, Li D, Guo H (2020) Contribution of microbial acclimation to lignite biomethanization. Energy Fuels 34(3):3223–3238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samir I. Gadow or Abd El-Latif Hesham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gadow, S.I., Hussein, H., Abdelhadi, A.A., Hesham, A.EL. (2023). Anaerobic Biotechnology: Implementations and New Advances. In: Shah, M.P. (eds) Modern Approaches in Waste Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-24086-7_9

Download citation

Publish with us

Policies and ethics