Skip to main content

Biofilms in Porous Media

  • Chapter
  • First Online:
Modern Approaches in Waste Bioremediation
  • 330 Accesses

Abstract

Biofilms are microbial communities that are attached to a surface in three dimensions. Biofilms formed when microorganisms like bacteria adhere, proliferate and enclose themselves in extracellular polymeric polymers (EPS) which is self-produced. It is formed in natural ecosystem or engineered systems and plays remarkable role in hydrodynamics in porous media. Microbial biofilms are resistant to environmental factors like temperature, pH, and water activity, mechanical stress. Microbial biofilms can impact the hydrodynamics of porous medium in both natural and artificial systems. Porosity, permeability, dispersion, diffusion, and mass transfer of reactive and nonreactive solutes are all influenced by biofilm development in porous media. Understanding and regulating biofilm development in porous medium will maximize the potential value of porous media biofilms while minimizing the negative consequences. Beneficial porous media biofilm uses include subsurface cleanup, improved oil recovery, and carbon sequestration, to name a few. The objective of the chapter is to focus on the various aspects of biofilm development in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong RT, Wildenschild D (2012) Investigating the pore-scale mechanisms of microbial enhanced oil recovery. J Pet Sci Eng 94–95:155–164

    Article  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263

    Article  CAS  Google Scholar 

  • Beltran MA, Paganin DM, Siu KKW, Fouras A, Hooper SB, Reser DH, Kitchen MJ (2011) Interface-specific x-ray phase retrieval tomography of complex biological organs. Phys Med Biol. 56:7353–7369. pmid:22048612

    Google Scholar 

  • Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K (2015) Material properties of biofilms—a review of methods for understanding permeability and mechanics. Rep Prog Phys 78:036601

    Article  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  CAS  Google Scholar 

  • Cunningham AB, Sharp RR, Hiebert R, James G (2003) Subsurface biofilm barriers for the containment and remediation of contaminated groundwater. Bioremediat J 7(3–4):151–164

    Google Scholar 

  • De Vos WM (2015) Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1:15005

    Article  Google Scholar 

  • Dixon MJ, Flint SH, Palmer JS, Love R, Chabas C, Beuger AL (2018) The effect of calcium on biofilm formation in dairy wastewater. Water Pract Technol 13(2):400–409

    Google Scholar 

  • Flemming H-C (2011) In: Flemming H-C, Wingender J, Szewzyk U (eds). Springer, pp 81–109

    Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  Google Scholar 

  • Godzieba M, Zubrowska-Sudol M, Walczak J, Ciesielski S (2022) Development of microbial communities in biofilm and activated sludge in a hybrid reactor

    Google Scholar 

  • Halan B, Bühler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    Article  CAS  Google Scholar 

  • Hand VL, Lloyd JR, Vaughan DJ, Wilkins MJ, Boult S (2008) Experimental studies of the influence of grain size, oxygen availability and organic carbon availability on bioclogging in porous media. Environ Sci Technol 42:1485–1491

    Google Scholar 

  • Hiebert R, Sharp RR, Cunningham AB, James G (2001, August) Development and demonstration of subsurface biofilm barriers using starved bacterial cultures. Contaminated Soil Sediment Water 45–47

    Google Scholar 

  • Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669

    Article  CAS  Google Scholar 

  • Holzner M, Morales VL, Willmann M, Dentz M (2015) Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys Rev E 92:013015

    Article  CAS  Google Scholar 

  • Iliuta I, Larachi F (2004) Biomass accumulation and clogging in tricklebed bioreactors. Aiche J 50:2541–2551

    Google Scholar 

  • Kapellos GE, Alexiou TS, Payatakes AC (2007a) Hierarchical simulator of biofilm growth and dynamics in granular porous materials. Adv Water Resour 30:1648–1667

    Google Scholar 

  • Kapellos GE, Alexiou TS, Payatakes AC (2007b) A multiscale theoretical model for diffusive mass transfer in cellular biological media. Math Biosci. https://doi.org/10.1016/j.mbs.2007.04.008

  • Kaplan JB (2014). In: Donelli G (ed) Microbial biofilms: methods and protocols. Springer, pp 203–213

    Google Scholar 

  • Komlos J, Cunningham AB, Camper AK, Sharp RR (2006) Effect of substrate concentration on dual-species biofilm population densities of Klebsiella oxytoca and Burkholderia cepacia in porous media. Biotechnol Bioeng 93:434–442

    Google Scholar 

  • Kone T, Golfier F, Orgogozo L, Oltéan C, Lefèvre E, Block JC et al (2014) Impact of biofilm-induced heterogeneities on solute transport in porous media. Water Resour Res 50:9103–9119

    Article  Google Scholar 

  • Majumdar U, Alexander T, Waskar M, Dagaonkar MV (2014) Effect of biofilm on colloid attachment in saturated porous media. Water Sci Technol 70(2):241–248

    Google Scholar 

  • Meckenstock R et al (2015) Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 49:7073–7081

    Article  CAS  Google Scholar 

  • Mondragón-Parada ME, Ruiz-Ordaz N, Tafoya-Garnica A, Juarez-Ramirez C, Curiel-Quesada E, Galindez-Mayer J (2008) Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor. J Ind Microbiol Biotechnol 35(7):767–776

    Google Scholar 

  • Neu TR, Lawrence JR (2014) Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol 23:233–242

    Article  Google Scholar 

  • Peszynska M, Trykozko A, Iltis G, Schlueter S, Wildenschild D (2015) Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling. Adv Water Resour 95:288–301

    Article  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4(1):1–21

    Google Scholar 

  • Rosenzweig R, Furman A, Dosoretz C, Shavit U (2014) Modeling biofilm dynamics and hydraulic properties in variably saturated soils using a channel network model. Water Resour Res 50(7):5678–5697

    Article  Google Scholar 

  • Sams R, Garca J, Molle P, Forquet N (2016) Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: application

    Google Scholar 

  • Shah Maulin P (2021) Removal of refractory pollutants from wastewater treatment plants. CRC Press

    Google Scholar 

  • Shah Maulin P (2020) Microbial bioremediation & biodegradation. Springer

    Google Scholar 

  • Thullner M (2010) Comparison of bioclogging effects in saturated porous media within one-and two-dimensional flow systems. Ecol Eng 36(2):176–196

    Article  Google Scholar 

  • Vogt SJ, Sanderlin AB, Seymour JD, Codd SL (2013) Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations. Biotechnol Bioeng 110:1366–1375. pmid:23239390

    Google Scholar 

  • Wildenschild D, Sheppard AP (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246

    Article  Google Scholar 

  • Wilking JN et al (2013) Liquid transport facilitated by channels in Bacillus subtilis. Proc Natl Acad Sci USA 110:848–852

    Article  CAS  Google Scholar 

  • Wingender J, Flemming H-C (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417–423

    Article  Google Scholar 

  • Xiong Q, Baychev TG, Jivkov AP (2016) Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J Contam Hydrol 192:101–117

    Article  CAS  Google Scholar 

  • Ye S, Zhang Y, Sleep BE (2015) Distribution of biofilm thickness in porous media and implications for permeability models. Hydrogeol J 23(8):1695–1702

    Article  Google Scholar 

  • Zhang T, Klapper I (2014) Critical occlusion via biofilm induced calcite precipitation in porous media. New J Phys 16(5):055009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Smitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, E., Varma, A., Smitha, M.S. (2023). Biofilms in Porous Media. In: Shah, M.P. (eds) Modern Approaches in Waste Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-24086-7_17

Download citation

Publish with us

Policies and ethics