Skip to main content

II–VI Semiconductor QDs in Surface Plasmon Resonance Sensors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

Surface plasmon resonance (SPR) sensors provide attractive performance in real-time gas sensing and biomolecular binding events. SPR is rapidly developing a label-free technique capable of measuring real-time quantitative binding affinities and kinetics for biological samples. The working principle section on electromagnetic theory describes the light-matter interaction at the metal-semiconductor interface. The SPR theory explained a short representation of the excitation of the surface plasmon and the constructions of an SPR sensor. The SPR biosensor sections demonstrate the plasmonic characteristics of semiconductor nanostructures and their performance in optics, fabrication, functionalisation and biosensing. The sensor limitation is described from an enhancement perspective. The gas sensing section describes some recent advances in SPR-based technology to detect the volatile molecules and the future potential of the SPR technique. Metal oxide semiconducting nanoparticles are also covered in the gas sensing section. Finally, functionalised semiconductor nanoparticles are summarised to introduce the biomolecular interactions in the SPR sensors. The use of semiconductor features in SPR will be promising for future environmental monitoring sensors, with many advantages for label-free sensing technologies in every aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized surface Plasmon resonance in semiconductor nanocrystals. Chem Rev. 2018;118(6):3121–207. https://doi.org/10.1021/acs.chemrev.7b00613.

    Article  Google Scholar 

  2. Akgönüllü S, Yavuz H, Denizli A. SPR nanosensor based on molecularly imprinted polymer film with gold NPs for sensitive detection of aflatoxin B1. Talanta. 2020;219:121219. https://doi.org/10.1016/j.talanta.2020.121219.

    Article  Google Scholar 

  3. Ali MA, Srivastava S, Pandey MK, Agrawal VV, John R, Malhotra BD. Protein-conjugated quantum dots interface: binding kinetics and label-free lipid detection. Anal Chem. 2014;86(3):1710–8. https://doi.org/10.1021/ac403543g.

    Article  Google Scholar 

  4. Aubret A, Pillonnet A, Houel J, Dujardin C, Kulzer F. CdSe/ZnS quantum dots as sensors for the local RI. Nanoscale. 2016;8(4):2317–25. https://doi.org/10.1039/c5nr06998j.

    Article  ADS  Google Scholar 

  5. Barho FB, Gonzalez-Posada F, Milla-Rodrigo M-J, Bomers M, Cerutti L, Taliercio T. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. Opt Express. 2016;24(14):16175. https://doi.org/10.1364/oe.24.016175.

    Article  ADS  Google Scholar 

  6. Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–807. https://doi.org/10.1021/acsnano.0c04421.

    Article  Google Scholar 

  7. Bhar GC. RI interpolation in phase-matching. Appl Opt. 1976;15(2):305_1. https://doi.org/10.1364/ao.15.0305_1.

  8. Bokken GCAM, Corbee RJ, Van Knapen F, Bergwerff AA. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett. 2003;222(1):75–82. https://doi.org/10.1016/S0378-1097(03)00250-7.

    Article  Google Scholar 

  9. Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science. 2011;331(6015):290–1. https://doi.org/10.1126/science.1198258.

    Article  ADS  Google Scholar 

  10. Bond WL. Measurement of the refractive indices of several crystals. J Appl Phys. 1965;36(5):1674–7. https://doi.org/10.1063/1.1703106.

    Article  ADS  Google Scholar 

  11. Breault-Turcot J, Chaurand P, Masson JF. Unravelling nonspecific adsorption of complex protein mixture on surfaces with SPR and MS. Anal Chem. 2014;86(19):9612–9. https://doi.org/10.1021/ac502077b.

    Article  Google Scholar 

  12. Brockman JM, Frutos AG, Corn RM. A multistep chemical modification procedure to create dna arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J Am Chem Soc. 1999;121(35):8044–51. https://doi.org/10.1021/ja991608e.

    Article  Google Scholar 

  13. Cao Y, Griffith B, Bhomkar P, Wishart DS, McDermott MT. Functionalized gold NP-enhanced competitive assay for sensitive small-molecule metabolite detection using surface plasmon resonance. Analyst. 2018;143(1):289–96. https://doi.org/10.1039/c7an01680h.

    Article  ADS  Google Scholar 

  14. Chang CC. Recent advancements in aptamer-based surface plasmon resonance biosensing strategies. Biosensors. 2021;11(7). https://doi.org/10.3390/bios11070233.

  15. Chen Liu XC. EDC-mediated oligonucleotide immobilization on a long period grating optical biosensor. J Biosens Bioelectron. 2015;6(2):1000173. https://doi.org/10.4172/2155-6210.1000173.

    Article  Google Scholar 

  16. Cheng XR, Hau BYH, Endo T, Kerman K. Au NP-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens Bioelectron. 2014;53:513–8. https://doi.org/10.1016/j.bios.2013.10.003.

    Article  Google Scholar 

  17. Chiang HP, Chen CW, Wu JJ, Li HL, Lin TY, Sánchez EJ, Leung PT. Effects of temperature on the surface plasmon resonance at a metal-semiconductor interface. Thin Solid Films. 2007;515(17):6953–61. https://doi.org/10.1016/j.tsf.2007.02.034.

    Article  ADS  Google Scholar 

  18. Chowdhury AD, Nasrin F, Gangopadhyay R, Ganganboina AB, Takemura K, Kozaki I, et al. Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors. Biosens Bioelectron. 2020;170:112657. https://doi.org/10.1016/j.bios.2020.112657.

    Article  Google Scholar 

  19. Dahlman CJ, Agrawal A, Staller CM, Adair J, Milliron DJ. Anisotropic origins of localized surface plasmon resonance in n-type Anatase TiO2 nanocrystals. Chem Mater. 2019;31(2):502–11. https://doi.org/10.1021/acs.chemmater.8b04519.

    Article  Google Scholar 

  20. Descamps MN, Bordy T, Hue J, Mariano S, Nonglaton G, Schultz E, et al. Real-time detection of formaldehyde by a fluorescence-based sensor. Procedia Eng. 2010;5:1009–12. https://doi.org/10.1016/j.proeng.2010.09.280.

    Article  Google Scholar 

  21. Ermini ML, Song XC, Špringer T, Homola J. Peptide functionalization of gold NPs for the detection of carcinoembryonic antigen in blood plasma via SPR-based biosensor. Front Chem. 2019;7:40. https://doi.org/10.3389/fchem.2019.00040.

    Article  ADS  Google Scholar 

  22. Fasoli JB, Corn RM. Surface enzyme chemistries for ultrasensitive microarray biosensing with SPR imaging. Langmuir. 2015;31(35):9527–36. https://doi.org/10.1021/la504797z.

    Article  Google Scholar 

  23. Garnett JCM. XII. Colours in metal glasses and in metallic films. Philos Trans R Soc London, Series A. 1904;203(359–371):385–420. https://doi.org/10.1098/rsta.1904.0024.

    Article  MATH  ADS  Google Scholar 

  24. Ghrera AS, Pandey MK, Malhotra BD. Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection. Biosens Bioelectron. 2016;80:477–82. https://doi.org/10.1016/j.bios.2016.02.013.

    Article  Google Scholar 

  25. Giannini V, Vecchi G, Gómez Rivas J. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett. 2010;105(26):266801. https://doi.org/10.1103/PhysRevLett.105.266801.

    Article  ADS  Google Scholar 

  26. Gil RL, Amorim CG, Montenegro MCBSM, Araújo AN. HPLC-potentiometric method for determination of biogenic amines in alcoholic beverages: a reliable approach for food quality control. Food Chem. 2022;372:131288. https://doi.org/10.1016/j.foodchem.2021.131288.

    Article  Google Scholar 

  27. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver NPs. J Am Chem Soc. 2002;124(35):10596–604. https://doi.org/10.1021/ja020393x.

    Article  Google Scholar 

  28. Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D. Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sensors J. 2018;18(1):133–40. https://doi.org/10.1109/JSEN.2017.2769720.

    Article  ADS  Google Scholar 

  29. Hati S, Langlais SR, Masterson AN, Liyanage T, Muhoberac BB, Kaimakliotis H, Johnson M, Sardar R. Photoswitchable machine-engineered plasmonic nanosystem with high optical response for ultrasensitive detection of microRNAs and proteins adaptively. Anal Chem. 2021;93(41):13935–44. https://doi.org/10.1021/acs.analchem.1c02990.

    Article  Google Scholar 

  30. Hinman SS, McKeating KS, Cheng Q. Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem. 2018;90(1):19–39. https://doi.org/10.1021/acs.analchem.7b04251.

    Article  Google Scholar 

  31. Huang Y, Zhang L, Zhang H, Li Y, Liu L, Chen Y, Qiu X, Yu D. Development of a portable SPR sensor for nucleic acid detection. Micromachines. 2020;11(5). https://doi.org/10.3390/mi11050526.

  32. Hyeon SH, Lim WK, Shin HJ. Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium. Biotechnol Appl Biochem. 2021;68(1):5–12. https://doi.org/10.1002/bab.1883.

    Article  Google Scholar 

  33. Jiang Y, Zhao H, Lin Y, Zhu N, Ma Y, Mao L. Colorimetric detection of glucose in rat brain using gold NPs. Angew Chem Int Ed. 2010;49(28):4800–4. https://doi.org/10.1002/anie.201001057.

    Article  Google Scholar 

  34. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem. 2017;129(39):12078–82. https://doi.org/10.1002/ange.201703807.

    Article  ADS  Google Scholar 

  35. Karakouz T, Vaskevich A, Rubinstein I. Polymer-coated gold island films as localized plasmon transducers for gas sensing. J Phys Chem B. 2008;112(46):14530–8. https://doi.org/10.1021/jp804829t.

    Article  Google Scholar 

  36. Kluková L, Bertok T, Kasák P, Tkac J. Nanoscale-controlled architecture for the development of ultrasensitive lectin biosensors applicable in glycomics. Anal Methods. 2014;6(14):4922–31. https://doi.org/10.1039/c4ay00495g.

    Article  Google Scholar 

  37. Konda RB, Mundle R, Mustafa H, Bamiduro O, Pradhan AK, Roy UN, et al. Surface plasmon excitation via Au NPs in n-CdSe/p-Si heterojunction diodes. Appl Phys Lett. 2007;91(19):191111. https://doi.org/10.1063/1.2807277.

    Article  ADS  Google Scholar 

  38. Lan YB, Wang SZ, Yin YG, Hoffmann WC, Zheng XZ. Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass. J Bionic Eng. 2008;5(3):239–46. https://doi.org/10.1016/S1672-6529(08)60030-X.

    Article  Google Scholar 

  39. Law S, Yu L, Wasserman D. Epitaxial growth of engineered metals for mid-infrared plasmonics. J Vac Sci Technol B, Nanotechnol Microelectron. 2013;31(3):03C121. https://doi.org/10.1116/1.4797487.

    Article  Google Scholar 

  40. Law S, Liu R, Wasserman D. Doped semiconductors with band-edge plasma frequencies. J Vac Sci Technol B, Nanotechnol Microelectron. 2014;32(5):052601. https://doi.org/10.1116/1.4891170.

    Article  Google Scholar 

  41. Li D, Ning CZ. All-semiconductor active plasmonic system in mid-infrared wavelengths. Opt Express. 2011;19(15):14594. https://doi.org/10.1364/oe.19.014594.

    Article  ADS  Google Scholar 

  42. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134(1):15–8. https://doi.org/10.1021/ja206030c.

    Article  Google Scholar 

  43. Li X, Wang M, Zhang B. Equivalent medium theory of layered sphere particle with anisotropic shells. J Quant Spectrosc Radiat Transfer. 2016;179:165–9. https://doi.org/10.1016/j.jqsrt.2016.03.008.

    Article  ADS  Google Scholar 

  44. Li HJ, Sun X, Xue F, Ou N, Sun BW, Qian DJ, et al. Redox induced fluorescence on-off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging. ACS Sustain Chem Eng. 2018;6(2):1708–16. https://doi.org/10.1021/acssuschemeng.7b02941.

    Article  Google Scholar 

  45. Liu G, Qi S, Chen J, Lou Y, Zhao Y, Burda C. Cu-Sb-S ternary semiconductor NP plasmonics. Nano Lett. 2021;21(6):2610–7. https://doi.org/10.1021/acs.nanolett.1c00006.

    Article  ADS  Google Scholar 

  46. Lu HB, Homola J, Campbell CT, Nenninger GG, Yee SS, Ratner BD. Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing. Sensors Actuators B Chem. 2001;74(1–3):91–9. https://doi.org/10.1016/S0925-4005(00)00716-4.

    Article  Google Scholar 

  47. Mauriz E. Recent progress in plasmonic biosensing schemes for virus detection. Sensors (Switzerland). 2020;20(17):1–27. https://doi.org/10.3390/s20174745.

    Article  Google Scholar 

  48. Mazumdar SD, Hartmann M, Kämpfer P, Keusgen M. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosens Bioelectron. 2007;22(9–10):2040–6. https://doi.org/10.1016/j.bios.2006.09.004.

    Article  Google Scholar 

  49. Mei GS, Susthitha Menon P, Hegde G. ZnO for performance enhancement of surface plasmon resonance biosensor: a review. Mater Res Express. 2020;7(1) https://doi.org/10.1088/2053-1591/ab66a7.

  50. Mirzaei A, Leonardi SG, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int. 2016;42(14):15119–41. https://doi.org/10.1016/j.ceramint.2016.06.145.

    Article  Google Scholar 

  51. Mishra SK, Kumari D, Gupta BD. Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sensors Actuators B Chem. 2012;171–172:976–83. https://doi.org/10.1016/j.snb.2012.06.013.

    Article  Google Scholar 

  52. Mishra SK, Usha SP, Gupta BD. A lossy mode resonance-based fiber optic hydrogen gas sensor for room temperature using coatings of ITO thin film and NPs. Meas Sci Technol. 2016;27(4):045103. https://doi.org/10.1088/0957-0233/27/4/045103.

    Article  Google Scholar 

  53. Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater. 2013;25(24):3264–94. https://doi.org/10.1002/adma.201205076.

    Article  Google Scholar 

  54. Oliverio M, Perotto S, Messina GC, Lovato L, De Angelis F. Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies, and costs. ACS Appl Mater Interfaces. 2017;9(35):29394–411. https://doi.org/10.1021/acsami.7b01583.

    Article  Google Scholar 

  55. Ou H, Cheng T, Zhang Y, Liu J, Ding Y, Zhen J, et al. Surface-adaptive zwitterionic NPs for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 2018;65:339–48. https://doi.org/10.1016/j.actbio.2017.10.034.

    Article  Google Scholar 

  56. Özgür E, Topçu AA, Yılmaz E, Denizli A. Surface plasmon resonance based biomimetic sensor for urinary tract infections. Talanta. 2020;212:120778. https://doi.org/10.1016/j.talanta.2020.120778.

    Article  Google Scholar 

  57. Pereira RMS, Borges J, Smirnov GV, Vaz F, Vasilevskiy MI. Surface plasmon resonance in a metallic NP embedded in a semiconductor matrix: exciton-plasmon coupling. ACS Photon. 2019;6(1):204–10. https://doi.org/10.1021/acsphotonics.8b01430.

    Article  Google Scholar 

  58. Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: an overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta. 2020;1104:10–27. https://doi.org/10.1016/j.aca.2019.12.067.

    Article  Google Scholar 

  59. Raether H, Hohler G, Niekisch EA. Surface plasmons on smooth and rough surfaces and on gratings. In: Raether H, editor. Springer tracts in modern physics, vol. 111. Berlin: Springer; 1988. p. 136. https://doi.org/10.1007/BFb0048317.

    Chapter  Google Scholar 

  60. Saleviter S, Fen YW, Sheh Omar NA, Mustaqim Mohd Daniyal WME, Abdullah J, Mat Zaid MH. Structural and optical studies of cadmium sulfide quantum dot-graphene oxide-chitosan nanocomposite thin film as a novel SPR spectroscopy active layer. J Nanomater. 2018;2018:4324072. https://doi.org/10.1155/2018/4324072.

    Article  Google Scholar 

  61. Santos FJ, Galceran MT. Modern developments in gas chromatography-mass spectrometry-based environmental analysis. J Chromatogr A. 2003;1000(1–2):125–51. https://doi.org/10.1016/S0021-9673(03)00305-4.

    Article  Google Scholar 

  62. Scharf P, Broering MF, da Rocha GHO, Farsky SHP. Cellular and molecular mechanisms of environmental pollutants on hematopoiesis. Int J Mol Sci. 2020;21(19):1–30. https://doi.org/10.3390/ijms21196996.

    Article  Google Scholar 

  63. Shabaninezhad M, Kayani A, Ramakrishna G. Theoretical investigation of optical properties of embedded plasmonic NPs. Chem Phys. 2021;541:111044. https://doi.org/10.1016/j.chemphys.2020.111044.

    Article  Google Scholar 

  64. Shafkat A, Reja MI, Miah MJ, Fatema S, Absar R, Akhtar J. Numerical exploration of external sensing scheme based photonic crystal fiber surface plasmonic sensor with different noble plasmonic materials and their alloys. Optik. 2021;231:166418. https://doi.org/10.1016/j.ijleo.2021.166418.

    Article  ADS  Google Scholar 

  65. Sharma AK, Gupta BD. Metal-semiconductor nanocomposite layer based optical fibre surface plasmon resonance sensor. J Opt A Pure Appl Opt. 2007;9(2):180–5. https://doi.org/10.1088/1464-4258/9/2/011.

    Article  ADS  Google Scholar 

  66. Sharma AK, Pandey AK, Kaur B. Simulation study on comprehensive sensing enhancement of BlueP/MoS2 - and BlueP/WS2 -based fluoride fiber surface plasmon resonance sensors: analysis founded on damping, field, and optical power. Appl Opt. 2019;58(16):4518. https://doi.org/10.1364/ao.58.004518.

    Article  ADS  Google Scholar 

  67. Singh S, Prajapati YK. TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik. 2020;224:165525. https://doi.org/10.1016/j.ijleo.2020.165525.

    Article  ADS  Google Scholar 

  68. Socorro-Leránoz AB, Santano D, Del Villar I, Matias IR. Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosens Bioelectron. 2019;1:100015. https://doi.org/10.1016/j.biosx.2019.100015.

    Article  Google Scholar 

  69. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47(5):819–46. https://doi.org/10.1146/annurev.bi.47.070178.004131.

    Article  Google Scholar 

  70. Tadimety A, Wu Z, Molinski JH, Beckerman R, Jin C, Zhang L, et al. Rational design of on-chip gold plasmonic NPs towards ctDNA screening. Sci Rep. 2021;11(1):1–10. https://doi.org/10.1038/s41598-021-93207-7.

    Article  Google Scholar 

  71. Takemura K, Adegoke O, Suzuki T, Park EY. A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus. PLoS One. 2019;14(1):1–14. https://doi.org/10.1371/journal.pone.0211517.

    Article  Google Scholar 

  72. Tandon B, Ghosh S, Milliron DJ. Dopant selection strategy for high-quality factor localized surface plasmon resonance from doped metal oxide nanocrystals. Chem Mater. 2019;31(18):7752–60. https://doi.org/10.1021/acs.chemmater.9b02917.

    Article  Google Scholar 

  73. Tang L, Li J. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sensors. 2017;2(7):857–75. https://doi.org/10.1021/acssensors.7b00282.

    Article  Google Scholar 

  74. Tatian B. Fitting refractive-index data with the Sellmeier dispersion formula. Appl Opt. 1984;23(24):4477. https://doi.org/10.1364/ao.23.004477.

    Article  ADS  Google Scholar 

  75. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron. 2006;22(5):752–8. https://doi.org/10.1016/j.bios.2006.03.012.

    Article  Google Scholar 

  76. Teixeira LSG, Leão ES, Dantas AF, Pinheiro HLC, Costa ACS, De Andrade JB. Determination of formaldehyde in Brazilian alcohol fuels by flow-injection solid phase spectrophotometry. Talanta. 2004;64(3):711–5. https://doi.org/10.1016/j.talanta.2004.03.047.

    Article  Google Scholar 

  77. Ung T, Liz-Marzán LM, Mulvaney P. Optical properties of thin films of AuO/SiO2 particles. J Phys Chem B. 2001;105(17):3441–52. https://doi.org/10.1021/jp003500n.

    Article  Google Scholar 

  78. Wang Q, Wang JF, Geil PH, Padua GW. Zein adsorption to hydrophilic and hydrophopic surfaces investigates by surface plasmon resonance. Biomacromolecules. 2004;5(4):1356–61. https://doi.org/10.1021/bm049965r.

    Article  Google Scholar 

  79. Wang X, Si Y, Wang J, Ding B, Yu J, Al-Deyab SS. A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sensors Actuators B Chem. 2012;163(1):186–93. https://doi.org/10.1016/j.snb.2012.01.033.

    Article  Google Scholar 

  80. Wang Y, Ou JZ, Chrimes AF, Carey BJ, Daeneke T, Alsaif MMYA, et al. Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett. 2015;15(2):883–90. https://doi.org/10.1021/nl503563g.

    Article  ADS  Google Scholar 

  81. Wang J, Zhang HZ, Li RS, Huang CZ. Localized surface plasmon resonance of gold nanorods and assemblies in the view of biomedical analysis. TrAC. 2016a;80:429–43. https://doi.org/10.1016/j.trac.2016.03.015.

    Article  Google Scholar 

  82. Wang X, Sun G, Li N, Chen P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev. 2016b;45(8):2239–62. https://doi.org/10.1039/c5cs00811e.

    Article  Google Scholar 

  83. Wang W, Ramezani M, Väkeväinen AI, Törmä P, Rivas JG, Odom TW. The rich photonic world of plasmonic NP arrays. Mater Today. 2018;21(3):303–14. https://doi.org/10.1016/j.mattod.2017.09.002.

    Article  Google Scholar 

  84. Wang Y, Jin Y, Zhang T, Huang Z, Yang H, Wang J, Jiang K, Fan S, Li Q. Emission enhancement from CdSe/ZnS quantum dots induced by strong localized surface plasmonic resonances without damping. J Phys Chem Lett. 2019a;10(9):2113–20. https://doi.org/10.1021/acs.jpclett.9b00818.

    Article  Google Scholar 

  85. Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal NPs growth-based colorimetric strategies: from monocolorimetric to multicolorimetric sensors. Coord Chem Rev. 2019b;398:113003. https://doi.org/10.1016/j.ccr.2019.06.020.

    Article  Google Scholar 

  86. Watts HJ, Partes H, Yeung D. Real-time detection and quantification of DNA hybridization by an optical biosensor. Anal Chem. 1995;67(23):4283–9. https://doi.org/10.1021/ac00119a013.

    Article  Google Scholar 

  87. Wätzig H, Oltmann-Norden I, Steinicke F, Alhazmi HA, Nachbar M, El-Hady DA, et al. Data quality in drug discovery: the role of analytical performance in ligand binding assays. J Comput Aided Mol Des. 2015;29(9):847–65. https://doi.org/10.1007/s10822-015-9851-6.

    Article  ADS  Google Scholar 

  88. Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors Actuators B Chem. 2011;160(1):580–91. https://doi.org/10.1016/j.snb.2011.08.032.

    Article  Google Scholar 

  89. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B. 2006;110(32):15666–75. https://doi.org/10.1021/jp0608628.

    Article  Google Scholar 

  90. Wu F, Thomas PA, Kravets VG, Arola HO, Soikkeli M, Iljin K, et al. Layered material platform for surface plasmon resonance biosensing. Sci Rep. 2019;9(1):20286. https://doi.org/10.1038/s41598-019-56105-7.

    Article  ADS  Google Scholar 

  91. Wu MC, Kao CK, Lin TF, Chan SH, Chen SH, Lin CH, et al. Surface plasmon resonance amplified efficient polarization-selective volatile organic compounds CdSe-CdS/Ag/PMMA sensing material. Sensors Actuators B Chem. 2020;309:127760. https://doi.org/10.1016/j.snb.2020.127760.

    Article  Google Scholar 

  92. Xue S, Jiang XF, Zhang G, Wang H, Li Z, Hu X, et al. Surface plasmon-enhanced optical formaldehyde sensor based on CdSe@ZnS quantum dots. ACS Sensors. 2020;5(4):1002–9. https://doi.org/10.1021/acssensors.9b02462.

    Article  Google Scholar 

  93. Yang Y, Miller OD, Christensen T, Joannopoulos JD, Soljačić M. Low-loss plasmonic dielectric nanoresonators. Nano Lett. 2017;17(5):3238–45. https://doi.org/10.1021/acs.nanolett.7b00852.

    Article  ADS  Google Scholar 

  94. Yang W, Liu Y, McBride JR, Lian T. Ultrafast and long-lived transient heating of surface adsorbates on plasmonic semiconductor nanocrystals. Nano Lett. 2021;21(1):453–61. https://doi.org/10.1021/acs.nanolett.0c03911.

    Article  ADS  Google Scholar 

  95. Yu H, Peng Y, Yang Y, Li ZY. Plasmon-enhanced light–matter interactions and applications. Npj Comput Mater. 2019;5(1):1–14. https://doi.org/10.1038/s41524-019-0184-1.

    Article  ADS  Google Scholar 

  96. Zdanowicz M, Mroczyński R, Szczepański P. Strong second-harmonic response from semiconductor–dielectric interfaces. Appl Opt. 2021;60(5):1132. https://doi.org/10.1364/ao.414255.

    Article  ADS  Google Scholar 

  97. Zemel JN, Jensen JD, Schoolar RB. Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys Rev. 1965;140(1A):A330. https://doi.org/10.1103/PhysRev.140.A330.

    Article  ADS  Google Scholar 

  98. Zhang H, Cao P, Dou J, Cheng L, Niu T, Zhang G. Double-exponential RI sensitivity of metal-semiconductor core-shell NPs: the effects of dual-plasmon resonances and red-shift. RSC Adv. 2018;8(3):1700–5. https://doi.org/10.1039/c7ra11981j.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Anuj K. Sharma gratefully acknowledges the sponsored research project grants “03(1441)/18/EMR-II” and “CRG/2019/002636” funded by the Council of Scientific & Industrial Research (India) and the Science & Engineering Research Board (India), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badgujar, H.F., Sharma, A.K. (2023). II–VI Semiconductor QDs in Surface Plasmon Resonance Sensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_23

Download citation

Publish with us

Policies and ethics