Skip to main content

Main Techniques for Evaluating the Performances of Humidification Devices Used for Mechanical Ventilation

  • Chapter
  • First Online:
Humidification in the Intensive Care Unit
  • 410 Accesses

Abstract

Hygrometric measurement of gases conditioned by heat and moisture exchangers (HMEs) or heated humidifiers (HH) during mechanical ventilation is mainly used for research. The technique of the visual evaluation of the condensation on the flex tube or on the humidification chamber’s wall is feasible at the patient bedside but has many limitations. Several techniques to measure the moisture of gases exist. The most frequently used are the psychrometric method and the capacitance hygrometers that may be used in patients (during invasive or non-invasive ventilation) or on bench. The gravimetry (used by the standard ISO 9360) has technical limitations with high risk of errors and can only be used on bench. Psychrometry and capacitance hygrometers are generally used for clinical research, whereas the manufacturers of humidification systems often use gravimetry. This may explain the large differences in performance evaluation found for HMEs assessment. It was again observed during the pandemic that the humidity measurements conducted by the manufacturers with the ISO standards overestimated the humidity delivered to patients by their devices. Only independent measurements could discriminate between safe devices that should be used in patients from other devices. The large differences found between the manufacturer’s claim and the measured humidity by the psychrometric method call into question the validity of the ISO standard for detecting underperforming HMEs.

A new method to evaluate humidity delivered by heated wire humidifiers has been described recently. The heater plate temperature is closely correlated to the absolute humidity delivered to patients, and this temperature should be monitored in the case of high ambient temperature (that causes dysfunction of heated wire humidifiers). Heater plate temperature of above 62 °C predicts adequate humidity (above 30 mgH2O/L) in most situations with MR850.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lellouche F, et al. Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data. Chest. 2009;135(2):276–86.

    PubMed  Google Scholar 

  2. Thiery G, et al. Heat and moisture exchangers in mechanically ventilated intensive care unit patients: a plea for an independent assessment of their performance. Crit Care Med. 2003;31(3):699–704.

    PubMed  Google Scholar 

  3. Lellouche F, et al. How to avoid an epidemic of endotracheal tube occlusion. Lancet Respir Med. 2021;9(11):1215–6.

    PubMed  PubMed Central  Google Scholar 

  4. Beydon L, et al. Correlation between simple clinical parameters and the in vitro humidification characteristics of filter heat and moisture exchangers. Groupe de travail Sur les Respirateurs. Chest. 1997;112(3):739–44.

    CAS  PubMed  Google Scholar 

  5. Ricard JD, et al. Bedside evaluation of efficient airway humidification during mechanical ventilation of the critically ill. Chest. 1999;115(6):1646–52.

    CAS  PubMed  Google Scholar 

  6. Lellouche L, et al. Influence of ambient air and ventilator output temperature on performances of heated-wire humidifiers. Am J Respir Crit Care Med. 2004;170:1073–9.

    PubMed  Google Scholar 

  7. Williams RB. The effects of excessive humidity. Respir Care Clin N Am. 1998;4(2):215–28.

    CAS  PubMed  Google Scholar 

  8. Saussure H-BD. BARDE, editor. Défense de l'hygromètre à cheveu, pour servir de suite aux essais sur l'hygrométrie. Genève: MANGET. p. 1788.

    Google Scholar 

  9. Ingelstedt S. Studies on the conditioning of air in the respiratory tract. Acta Otolaryngol Suppl. 1956;131:1–80.

    CAS  PubMed  Google Scholar 

  10. Sara C, Currie T. Humidification by nebulization. Med J Aust. 1965;191:174–9.

    Google Scholar 

  11. Sottiaux T, et al. Comparative evaluation of three heat and moisture exchangers during short-term postoperative mechanical ventilation. Chest. 1993;104(1):220–4.

    CAS  PubMed  Google Scholar 

  12. Tsubota K, Harada J, Goto Y. Efficacy of nine heat and moisture exchangers for intraoperative airway heat conservation. J Aerosol Med. 1991;4(2):117–25.

    CAS  PubMed  Google Scholar 

  13. Jackson C, Webb AR. An evaluation of the heat and moisture exchange performance of four ventilator circuit filters. Intensive Care Med. 1992;18(5):264–8.

    CAS  PubMed  Google Scholar 

  14. Markowicz P, et al. Safety, efficacy, and cost-effectiveness of mechanical ventilation with humidifying filters changed every 48 hours: a prospective, randomized study. Crit Care Med. 2000;28(3):665–71.

    CAS  PubMed  Google Scholar 

  15. Vanderbroucke-Grauls CM, et al. Bacterial and viral removal efficiency, heat and moisture exchange properties of four filtration devices. J Hosp Infect. 1995;29(1):45–56.

    CAS  PubMed  Google Scholar 

  16. Chiumello D, et al. In vitro and in vivo evaluation of a new active heat moisture exchanger. Crit Care. 2004;8(5):R281–8.

    PubMed  PubMed Central  Google Scholar 

  17. Croci M, Elena A, Solca M. Performance of a hydrophobic heat and moisture exchanger at different ambient temperatures. Intensive Care Med. 1993;19(6):351–2.

    CAS  PubMed  Google Scholar 

  18. Martin C, et al. Performance evaluation of three vaporizing humidifiers and two heat and moisture exchangers in patients with minute ventilation >10 L/min. Chest. 1992;102(5):1347–50.

    CAS  PubMed  Google Scholar 

  19. Martin C, et al. Preservation of humidity and heat of respiratory gases in patients with a minute ventilation greater than 10 L/min. Crit Care Med. 1994;22(11):1871–6.

    CAS  PubMed  Google Scholar 

  20. Martin C, et al. Comparing two heat and moisture exchangers with one vaporizing humidifier in patients with minute ventilation greater than 10 L/min. Chest. 1995;107(5):1411–5.

    CAS  PubMed  Google Scholar 

  21. Miyao H, et al. Relative humidity, not absolute humidity, is of great importance when using a humidifier with a heating wire. Crit Care Med. 1992;20(5):674–9.

    CAS  PubMed  Google Scholar 

  22. Ricard JD, et al. Efficiency and safety of mechanical ventilation with a heat and moisture exchanger changed only once a week. Am J Respir Crit Care Med. 2000;161(1):104–9.

    CAS  PubMed  Google Scholar 

  23. Christiansen S, et al. Measurement of the humidity of inspired air in ventilated patients with various humidifier systems. Anasthesiol Intensivmed Notfallmed Schmerzther. 1998;33(5):300–5.

    CAS  PubMed  Google Scholar 

  24. Fassassi M, et al. Airway humidification with a heat and moisture exchanger in mechanically ventilated neonates: a preliminary evaluation. Intensive Care Med. 2007;33(2):336–43.

    PubMed  Google Scholar 

  25. Tontschev G, Lueder M, Bensow C. The efficiency of various humidifiers for respired gas. Resuscitation. 1980;8(3):167–79.

    CAS  PubMed  Google Scholar 

  26. Walker AK, Bethune DW. A comparative study of condenser humidifiers. Anaesthesia. 1976;31(8):1086–93.

    CAS  PubMed  Google Scholar 

  27. Condon E, Handbook of physics. New York. NY: Churchill Livingstone; 1967.

    Google Scholar 

  28. Lellouche F, Brochard L. Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Best Pract Res Clin Anaesthesiol. 2009;23(1):81–93.

    PubMed  Google Scholar 

  29. Lellouche F, et al. Impact of ambient air temperature on a new active HME and on standard HMES: bench evaluation. Intensive Care Med. 2003;29:S169.

    Google Scholar 

  30. Lellouche F, et al. Under-humidification and over-humidification during moderate induced hypothermia with usual devices. Intensive Care Med. 2006;32(7):1014–21.

    PubMed  Google Scholar 

  31. Lellouche L, et al. Advantages and drawbacks of a heated humidifier with compensation of under-humidification. Am J Respir Crit Care Med. 2003;167(7):A909.

    Google Scholar 

  32. Standardization, I.O.f., Anesthetic and respiratory equipment. Heat and moisture exchangers for use in humidifying gases in humans 1st ed. ISO International Standard 9360, 1992.

    Google Scholar 

  33. Branson R, Davis J. Evaluation of 21 passive humidifiers according to the ISO 9360 standard: moisture output, dead space, and flow resistance. Respir Care. 1996;41:736–43.

    Google Scholar 

  34. Eckerbom B, Lindholm CE. Performance evaluation of six heat and moisture exchangers according to the draft international standard (ISO/DIS 9360). Acta Anaesthesiol Scand. 1990;34(5):404–9.

    CAS  PubMed  Google Scholar 

  35. Mebius C. A comparative evaluation of disposable humidifiers. Acta Anaesthesiol Scand. 1983;27(5):403–9.

    CAS  PubMed  Google Scholar 

  36. Mebius C. Heat and moisture exchangers with bacterial filters: a laboratory evaluation. Acta Anaesthesiol Scand. 1992;36(6):572–6.

    CAS  PubMed  Google Scholar 

  37. Ogino M, Kopotic R, Mannino FL. Moisture-conserving efficiency of condenser humidifiers. Anaesthesia. 1985;40(10):990–5.

    CAS  PubMed  Google Scholar 

  38. Shelly M, Bethune DW, Latimer RD. A comparison of five heat and moisture exchangers. Anaesthesia. 1986;41(5):527–32.

    CAS  PubMed  Google Scholar 

  39. Tilling SE, Hancox AJ, Hayes B. An accurate method of measuring medical humidifier output. Clin Phys Physiol Meas. 1983;4(2):197–209.

    CAS  PubMed  Google Scholar 

  40. Boisson C, et al. Changing a hydrophobic heat and moisture exchanger after 48 hours rather than 24 hours: a clinical and microbiological evaluation. Intensive Care Med. 1999;25(11):1237–43.

    CAS  PubMed  Google Scholar 

  41. Davis K Jr, et al. Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000;28(5):1412–8.

    PubMed  Google Scholar 

  42. Thomachot L, et al. Changing heat and moisture exchangers after 96 hours rather than after 24 hours: a clinical and microbiological evaluation. Crit Care Med. 2000;28(3):714–20.

    CAS  PubMed  Google Scholar 

  43. Thomachot L, et al. Efficacy of heat and moisture exchangers after changing every 48 hours rather than 24 hours. Crit Care Med. 1998;26(3):477–81.

    CAS  PubMed  Google Scholar 

  44. Dery R. Humidity in anesthesiology III. Heat and moisture patterns in the respiratory tract during anesthesia with the semi-closed system. Can Anaesth Soc J. 1967;14:287–98.

    CAS  PubMed  Google Scholar 

  45. Dery R. The evolution of heat and moisture in the respiratory tract during anesthesia with a nonrebreathing system. Can Anaesth Soc J. 1973;20:296–309.

    CAS  PubMed  Google Scholar 

  46. Chalon J, et al. The pall ultipor breathing circuit filter--an efficient heat and moisture exchanger. Anesth Analg. 1984;63(6):566–70.

    CAS  PubMed  Google Scholar 

  47. Cigada M, et al. The efficiency of twelve heat and moisture exchangers: an in vitro evaluation. Int Care World. 1990;7:98–101.

    Google Scholar 

  48. Gedeon A, Mebius C. The hygroscopic condenser humidifier. A new device for general use in anaesthesia and intensive care. Anaesthesia. 1979;34(10):1043–7.

    CAS  PubMed  Google Scholar 

  49. Unal N, et al. An experimental set-up to test heat-moisture exchangers. Intensive Care Med. 1995;21(2):142–8.

    CAS  PubMed  Google Scholar 

  50. Lellouche F, Simard S, Bouchard PA. Monitoring of heated wire humidifier MR850 hygrometric performances with heater plate temperature. Respir Care. 2022;67(9):1147–53.

    PubMed  Google Scholar 

  51. Lavoie-Berard CA, et al. Impact of airway humidification strategy in the mechanically ventilated COVID-19 patients. Respir Care. 2021;67(2):157–66.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lellouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lellouche, F. (2023). Main Techniques for Evaluating the Performances of Humidification Devices Used for Mechanical Ventilation. In: Esquinas, A.M. (eds) Humidification in the Intensive Care Unit. Springer, Cham. https://doi.org/10.1007/978-3-031-23953-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23953-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23952-6

  • Online ISBN: 978-3-031-23953-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics