Skip to main content

Humidification During Invasive Mechanical Ventilation

  • Chapter
  • First Online:
Humidification in the Intensive Care Unit
  • 439 Accesses

Abstract

Adequate humidification of the gas delivered to patients during invasive mechanical ventilation is mandatory. The COVID-19 pandemic has reminded us that complications related to under-humidification of the gases are still a common problem. Low humidity delivered (below 28 mgH2O/L according to psychrometric measurements) will be responsible for endotracheal occlusions, a fatal complication and other less visible complications such as endotracheal sub-occlusions, and lesions of the bronchial mucosae including mucociliary dysfunction.

Heat and moisture exchangers (HMEs) (passive humidification) have very heterogeneous performances that are not well assessed by the current ISO 9360 standards. The choice of device with adequate humidification performances must be meticulous and should rely on independent measurements that better discriminate performances of these devices. The main contraindications of HME are (i) hypothermia that reduces both expiratory and consequently inspiratory humidity delivered and (ii) presence of bloody secretions that promote tube occlusions and require higher humidity of the gases. In addition, when low tidal volumes and high respiratory rates are set, heated humidifiers should be used instead of HMEs to reduce dead space and improve CO2 elimination.

Heated humidifiers (HH) (active humidification) with heated wire deliver high humidity levels (around 35 mgH2O/L) when ambient air temperature is low but may have very low performances when ambient temperature is above 25 °C. New generations of HH that include more complex algorithms have good and stable humidification performances. With previous generation of heated wire HH, monitoring of the heater plate temperature provides very reliable information on the level of humidity delivered. When HP temperature is above 62 °C, the humidity is sufficient under usual conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassen HC. A preliminary report on the 1952 epidemic of poliomyelitis in Copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet. 1953;1:37–41.

    CAS  PubMed  Google Scholar 

  2. Burton JDK. Effect of dry anaesthetic gases on the respiratory mucus membrane. Lancet. 1962;1:235.

    CAS  PubMed  Google Scholar 

  3. Williams R, Rankin N, Smith T, Galler D, Seakins P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med. 1996;24:1920–9.

    CAS  PubMed  Google Scholar 

  4. British Standards Institution. Specifications for humidifiers for use with breathing machines. London: BS 4494; 1970.

    Google Scholar 

  5. American National Standards Institute. Standard for humidifiers and nebulizers for medical use. ASI. 1979;Z79(9):8.

    Google Scholar 

  6. International Organization of Standards. Humidifiers for medical use. ISO 8185 1988;60:14.

    Google Scholar 

  7. AARC clinical practice guideline. Humidification during mechanical ventilation. American Association for Respiratory Care. Respir Care. 1992;37:887–90.

    Google Scholar 

  8. American Association for Respiratory C, Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation: 2012. Respir Care. 2012;57:782–8.

    Google Scholar 

  9. Lellouche F, Taille S, Lefrancois F, et al. Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data. Chest. 2009;135:276–86.

    PubMed  Google Scholar 

  10. Ryan SN, Rankin N, Meyer E, Williams R. Energy balance in the intubated human airway is an indicator of optimal gas conditioning. Crit Care Med. 2002;30:355–61.

    PubMed  Google Scholar 

  11. Lellouche L, Taillé S, Maggiore SM, et al. Influence of ambient air and ventilator output temperature on performances of heated-wire humidifiers. Am J Respir Crit Care Med. 2004;170:1073–9.

    PubMed  Google Scholar 

  12. Lellouche F, Delorme M, Brochard L. Impact of respiratory rate and dead space in the current era of lung protective mechanical ventilation. Chest. 2020;158(1):45–7.

    PubMed  Google Scholar 

  13. Lavoie-Berard CA, Lefebvre JC, Bouchard PA, Simon M, Lellouche F. Impact of airway humidification strategy in the mechanically ventilated COVID-19 patients. Respir Care. 2021;67(2):157–66.

    PubMed  Google Scholar 

  14. Chamney AR. Humidification requirements and techniques. Including a review of the performance of equipment in current use. Anaesthesia. 1969;24:602–17.

    CAS  PubMed  Google Scholar 

  15. Chatburn RL, Primiano FP Jr. A rational basis for humidity therapy. Respir Care. 1987;32:249–54.

    Google Scholar 

  16. International Organization of Standards. Humidifiers for medical use. General requirements for humidification systems. ISO 8185 1997.

    Google Scholar 

  17. Villafane MC, Cinnella G, Lofaso F, et al. Gradual reduction of endotracheal tube diameter during mechanical ventilation via different humidification devices. Anesthesiology. 1996;85:1341–9.

    CAS  PubMed  Google Scholar 

  18. Mietto C, Pinciroli R, Piriyapatsom A, et al. Tracheal tube obstruction in mechanically ventilated patients assessed by high-resolution computed tomography. Anesthesiology. 2014;121:1226–35.

    PubMed  Google Scholar 

  19. Moran I, Cabello B, Manero E, Mancebo J. Comparison of the effects of two humidifier systems on endotracheal tube resistance. Intensive Care Med. 2011;37:1773–9.

    PubMed  Google Scholar 

  20. Kapadia FN. Factors associated with blocked tracheal tubes. Intensive Care Med. 2001;27:1679–81.

    CAS  PubMed  Google Scholar 

  21. Kapadia FN, Bajan KB, Singh S, Mathew B, Nath A, Wadkar S. Changing patterns of airway accidents in intubated ICU patients. Intensive Care Med. 2001;27:296–300.

    CAS  PubMed  Google Scholar 

  22. Perez Acosta G, Santana-Cabrera L. Necrotizing tracheobronchitis with endotracheal tube obstruction in COVID-19 patients. Rev Clin Esp. 2020;220:531–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavoie-Bérard CA, Lefebvre JC, Bouchard PA, Simon M, Lellouche F. Impact of the airway humidification strategy in mechanically ventilated COVID-19 patient. Retrospective analysis and literature review. Respir Care. 2022;67(2):157–66. https://doi.org/10.4187/respcare.09314.

  24. Wiles S, Mireles-Cabodevila E, Neuhofs S, Mukhopadhyay S, Reynolds JP, Hatipoglu U. Endotracheal tube obstruction among patients mechanically ventilated for ARDS due to COVID-19: a case series. J Intensive Care Med. 2021;36(5):604–11.

    PubMed  Google Scholar 

  25. Rubano JA, Jasinski PT, Rutigliano DN, et al. Tracheobronchial Slough, a potential pathology in endotracheal tube obstruction in patients with coronavirus disease 2019 (COVID-19) in the intensive care setting. Ann Surg. 2020;272:e63–e5.

    PubMed  Google Scholar 

  26. Zaidi G, Narasimhan M. Lessons learned in critical care at a 23 hospital health system in New York during the coronavirus disease 2019 pandemic. Chest. 2020;158:1831–2.

    CAS  PubMed  Google Scholar 

  27. Bottiroli M, Calini A, Pinciroli R, et al. The repurposed use of anesthesia machines to ventilate critically ill patients with coronavirus disease 2019 (COVID-19). BMC Anesthesiol. 2021;21:155.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lellouche F, Lavoie-Bérard CA, Rousseau E, et al. How to avoid an epidemic of endotracheal tube occlusion. Lancet Respir Med. 2021;9:1215–6.

    PubMed  PubMed Central  Google Scholar 

  29. Al Dorzi HM, Ghanem AG, Hegazy MM, et al. Humidification during mechanical ventilation to prevent endotracheal tube occlusion in critically ill patients: a case control study. Ann Thorac Med. 2022;17:37–43.

    PubMed  PubMed Central  Google Scholar 

  30. Cohen IL, Weinberg PF, Fein IA, Rowinski GS. Endotracheal tube occlusion associated with the use of heat and moisture exchangers in the intensive care unit. Crit Care Med. 1988;16:277–9.

    CAS  PubMed  Google Scholar 

  31. Martin C, Perrin G, Gevaudan MJ, Saux P, Gouin F. Heat and moisture exchangers and vaporizing humidifiers in the intensive care unit. Chest. 1990;97:144–9.

    CAS  PubMed  Google Scholar 

  32. Misset B, Escudier B, Rivara D, Leclercq B, Nitenberg G. Heat and moisture exchanger vs heated humidifier during long-term mechanical ventilation. A prospective randomized study. Chest. 1991;100:160–3.

    CAS  PubMed  Google Scholar 

  33. Roustan JP, Kienlen J, Aubas P, Aubas S, du Cailar J. Comparison of hydrophobic heat and moisture exchanger with heated humidifier during prolonged mechanical ventilation. Intensive Care Med. 1992;18:97–100.

    CAS  PubMed  Google Scholar 

  34. Boots RJ, George N, Faoagali JL, Druery J, Dean K, Heller RF. Double-heater-wire circuits and heat-and-moisture exchangers and the risk of ventilator-associated pneumonia. Crit Care Med. 2006;34:687–93.

    PubMed  Google Scholar 

  35. Boots RJ, Howe S, George N, Harris FM, Faoagali J. Clinical utility of hygroscopic heat and moisture exchangers in intensive care patients. Crit Care Med. 1997;25:1707–12.

    CAS  PubMed  Google Scholar 

  36. Dreyfuss D, Djedaini K, Gros I, et al. Mechanical ventilation with heated humidifiers or heat and moisture exchangers: effects on patient colonization and incidence of nosocomial pneumonia. Am J Respir Crit Care Med. 1995;151:986–92.

    CAS  PubMed  Google Scholar 

  37. Hurni JM, Feihl F, Lazor R, Leuenberger P, Perret C. Safety of combined heat and moisture exchanger filters in long-term mechanical ventilation. Chest. 1997;111:686–91.

    CAS  PubMed  Google Scholar 

  38. Lacherade JC, Auburtin M, Cerf C, et al. Impact of humidification systems on ventilator-associated pneumonia: a randomized multicenter trial. Am J Respir Crit Care Med. 2005;172:1276–82.

    PubMed  Google Scholar 

  39. Kirton OC, DeHaven B, Morgan J, Morejon O, Civetta J. A prospective, randomized comparison of an in-line heat moisture exchange filter and heated wire humidifiers: rates of ventilator-associated early-onset (community-acquired) or late-onset (hospital-acquired) pneumonia and incidence of endotracheal tube occlusion. Chest. 1997;112:1055–9.

    CAS  PubMed  Google Scholar 

  40. Thomachot L, Vialet R, Viguier JM, Sidier B, Roulier P, Martin C. Efficacy of heat and moisture exchangers after changing every 48 hours rather than 24 hours. Crit Care Med. 1998;26:477–81.

    CAS  PubMed  Google Scholar 

  41. Branson RD, Davis K Jr, Campbell RS, Johnson DJ, Porembka DT. Humidification in the intensive care unit. Prospective study of a new protocol utilizing heated humidification and a hygroscopic condenser humidifier. Chest. 1993;104:1800–5.

    CAS  PubMed  Google Scholar 

  42. Jaber S, Pigeot J, Fodil R, et al. Long-term effects of different humidification systems on endotracheal tube patency: evaluation by the acoustic reflection method. Anesthesiology. 2004;100:782–8.

    PubMed  Google Scholar 

  43. Thomachot L, Leone M, Razzouk K, Antonini F, Vialet R, Martin C. Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days. Crit Care Med. 2002;30:232–7.

    PubMed  Google Scholar 

  44. Thomachot L, Vialet R, Arnaud S, Barberon B, Michel-Nguyen A, Martin C. Do the components of heat and moisture exchanger filters affect their humidifying efficacy and the incidence of nosocomial pneumonia? Crit Care Med. 1999;27:923–8.

    CAS  PubMed  Google Scholar 

  45. Thomachot L, Viviand X, Arnaud S, Boisson C, Martin CD. Comparing two heat and moisture exchangers, one hydrophobic and one hygroscopic, on humidifying efficacy and the rate of nosocomial pneumonia. Chest. 1998;114:1383–9.

    CAS  PubMed  Google Scholar 

  46. Kollef MH, Shapiro SD, Boyd V, et al. A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients. Chest. 1998;113:759–67.

    CAS  PubMed  Google Scholar 

  47. Branson R, Davis J. Evaluation of 21 passive humidifiers according to the ISO 9360 standard: moisture output, dead space, and flow resistance. Respir Care. 1996;41:736–43.

    Google Scholar 

  48. Lellouche F, Taille S, Maggiore SM, et al. Influence of ambient and ventilator output temperatures on performance of heated-wire humidifiers. Am J Respir Crit Care Med. 2004;170:1073–9.

    PubMed  Google Scholar 

  49. Rathgeber J, Kazmaier S, Penack O, Zuchner K. Evaluation of heated humidifiers for use on intubated patients: a comparative study of humidifying efficiency, flow resistance, and alarm functions using a lung model. Intensive Care Med. 2002;28:731–9.

    PubMed  Google Scholar 

  50. Thiery G, Boyer A, Pigne E, et al. Heat and moisture exchangers in mechanically ventilated intensive care unit patients: a plea for an independent assessment of their performance. Crit Care Med. 2003;31:699–704.

    PubMed  Google Scholar 

  51. Lellouche F, Qader S, Taille S, Brochard L. Influence of ambient air temperature on performances of different generations of heated humidifiers. Intensive Care Med. 2003;

    Google Scholar 

  52. Lellouche F, Lyazidi A, Brochard L. Improvement of humidification performances with new heated humidifiers. Am J Respir Crit Care Med. 2007;175

    Google Scholar 

  53. Schumann S, Stahl CA, Moller K, Priebe HJ, Guttmann J. Moisturizing and mechanical characteristics of a new counter-flow type heated humidifier. Br J Anaesth. 2007;98:531–8.

    CAS  PubMed  Google Scholar 

  54. Lellouche F, Rousseau E, Bouchard PA. Evaluation of the new heated wire heated humidifier F&P 950 under varying ambient temperature conditions. Intensive Care Med Exp. 2021;9:001220.

    Google Scholar 

  55. Bouchard PA, Rousseau E, Lellouche F. Evaluation of the performances of new generation of heated wire humidifiers. Intensive Care Med Exp. 2022;10:000606.

    Google Scholar 

  56. Craven DE, Connolly MG Jr, Lichtenberg DA, Primeau PJ, McCabe WR. Contamination of mechanical ventilators with tubing changes every 24 or 48 hours. N Engl J Med. 1982;306:1505–9.

    CAS  PubMed  Google Scholar 

  57. Ricard JD, Hidri N, Blivet A, Kalinowski H, Joly-Guillou ML, Dreyfuss D. New heated breathing circuits do not prevent condensation and contamination of ventilator circuits with heated humidifiers. Am J Respir Crit Care Med. 2003;167:A861.

    Google Scholar 

  58. Lellouche L, Qader S, L'Her E, et al. Advantages and drawbacks of a heated humidifier with compensation of under-humidification. Am J Respir Crit Care Med. 2003;167:A909.

    Google Scholar 

  59. Qader S, Taillé S, Lellouche F, et al. Influence de la température et de l'humidité du gaz sur la mesure du volume courant expiré. Réanimation. 2002;11:141s.

    Google Scholar 

  60. Lellouche F, Simard S, Bouchard PA. Monitoring of heated wire humidifier MR850 hygrometric performances with heater plate temperature. Respir Care. 2022;67(9):1147–53.

    PubMed  Google Scholar 

  61. Lellouche F, Simard S, Bouchard PA. Monitoring of heated wire humidifier hygrometric performances with heater plate temperature. Respir Care. 2022;67:1147–53.

    PubMed  Google Scholar 

  62. Ricard JD, Cook D, Griffith L, Brochard L, Dreyfuss D. Physicians' attitude to use heat and moisture exchangers or heated humidifiers: a Franco-Canadian survey. Intensive Care Med. 2002;28:719–25.

    PubMed  Google Scholar 

  63. Burns KE, Lellouche F, Loisel F, et al. Weaning critically ill adults from invasive mechanical ventilation: a national survey. Can J Anaesth. 2009;56:567–76.

    PubMed  Google Scholar 

  64. Mapleson WW, Morgan JG, Hillard EK. Assessment of condenser-humidifiers with special reference to a multiple-gauze model. Br Med J. 1963;1:300–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Walley RV. Humidifier for use with tracheotomy and positive-pressure respiration. Lancet. 1956;270:781–2.

    CAS  PubMed  Google Scholar 

  66. Hingorani BK. The resistance to airflow of tracheostomy tubes, connections, and heat and moisture exchangers. Br J Anaesth. 1965;37:454–63.

    CAS  PubMed  Google Scholar 

  67. Steward DJ. A disposable condenser humidifier for use during anaesthesia. Can Anaesth Soc J. 1976;23:191–5.

    CAS  PubMed  Google Scholar 

  68. Boisson C, Viviand X, Arnaud S, Thomachot L, Miliani Y, Martin C. Changing a hydrophobic heat and moisture exchanger after 48 hours rather than 24 hours: a clinical and microbiological evaluation. Intensive Care Med. 1999;25:1237–43.

    CAS  PubMed  Google Scholar 

  69. Lellouche F, Qader S, Taillé S, Brochard L. Impact of ambient air temperature on a new active HME and on standard HMES: bench evaluation. Intensive Care Med. 2003;29:S169.

    Google Scholar 

  70. Croci M, Elena A, Solca M. Performance of a hydrophobic heat and moisture exchanger at different ambient temperatures. Intensive Care Med. 1993;19:351–2.

    CAS  PubMed  Google Scholar 

  71. Lellouche F, Qader S, Taille S, Lyazidi A, Brochard L. Under-humidification and over-humidification during moderate induced hypothermia with usual devices. Intensive Care Med. 2006;32:1014–21.

    PubMed  Google Scholar 

  72. Dery R. The evolution of heat and moisture in the respiratory tract during anesthesia with a nonrebreathing system. Can Anaesth Soc J. 1973;20:296–309.

    CAS  PubMed  Google Scholar 

  73. Martin C, Papazian L, Perrin G, Bantz P, Gouin F. Performance evaluation of three vaporizing humidifiers and two heat and moisture exchangers in patients with minute ventilation >10 L/min. Chest. 1992;102:1347–50.

    CAS  PubMed  Google Scholar 

  74. Martin C, Thomachot L, Quinio B, Viviand X, Albanese J. Comparing two heat and moisture exchangers with one vaporizing humidifier in patients with minute ventilation greater than 10 L/min. Chest. 1995;107:1411–5.

    CAS  PubMed  Google Scholar 

  75. Nakagawa NK, Macchione M, Petrolino HM, et al. Effects of a heat and moisture exchanger and a heated humidifier on respiratory mucus in patients undergoing mechanical ventilation. Crit Care Med. 2000;28:312–7.

    CAS  PubMed  Google Scholar 

  76. Lellouche F, Qader S, Taillé S, Brochard L. Under-humidification of inspired gas with HME during induced hypothermia. Intensive Care Med. 2004;30:S 201.

    Google Scholar 

  77. Ricard JD, Le Miere E, Markowicz P, et al. Efficiency and safety of mechanical ventilation with a heat and moisture exchanger changed only once a week. Am J Respir Crit Care Med. 2000;161:104–9.

    CAS  PubMed  Google Scholar 

  78. Davis K Jr, Evans SL, Campbell RS, et al. Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000;28:1412–8.

    PubMed  Google Scholar 

  79. Kapadia F, Shelly MP, Anthony JM, Park GR. An active heat and moisture exchanger. Br J Anaesth. 1992;69:640–2.

    CAS  PubMed  Google Scholar 

  80. Thomachot L, Viviand X, Boyadjiev I, Vialet R, Martin C. The combination of a heat and moisture exchanger and a booster: a clinical and bacteriological evaluation over 96 h. Intensive Care Med. 2002;28:147–53.

    CAS  PubMed  Google Scholar 

  81. Larsson A, Gustafsson A, Svanborg L. A new device for 100 per cent humidification of inspired air. Crit Care. 2000;4:54–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chiumello D, Pelosi P, Park G, et al. In vitro and in vivo evaluation of a new active heat moisture exchanger. Crit Care. 2004;8:R281–8.

    PubMed  PubMed Central  Google Scholar 

  83. Ploysongsang Y, Branson R, Rashkin MC, Hurst JM. Pressure flow characteristics of commonly used heat-moisture exchangers. Am Rev Respir Dis. 1988;138:675–8.

    CAS  PubMed  Google Scholar 

  84. Manthous CA, Schmidt GA. Resistive pressure of a condenser humidifier in mechanically ventilated patients. Crit Care Med. 1994;22:1792–5.

    CAS  PubMed  Google Scholar 

  85. Lucato JJ, Tucci MR, Schettino GP, et al. Evaluation of resistance in 8 different heat-and-moisture exchangers: effects of saturation and flow rate/profile. Respir Care. 2005;50:636–43.

    PubMed  Google Scholar 

  86. Lellouche F, Maggiore SM, Deye N, et al. Effect of the humidification device on the work of breathing during noninvasive ventilation. Intensive Care Med. 2002;28:1582–9.

    PubMed  Google Scholar 

  87. Girault C, Breton L, Richard JC, et al. Mechanical effects of airway humidification devices in difficult to wean patients. Crit Care Med. 2003;31:1306–11.

    PubMed  Google Scholar 

  88. Iotti GA, Olivei MC, Braschi A. Mechanical effects of heat-moisture exchangers in ventilated patients. Crit Care. 1999;3:R77–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Iotti GA, Olivei MC, Palo A, et al. Unfavorable mechanical effects of heat and moisture exchangers in ventilated patients. Intensive Care Med. 1997;23:399–405.

    CAS  PubMed  Google Scholar 

  90. Le Bourdelles G, Mier L, Fiquet B, et al. Comparison of the effects of heat and moisture exchangers and heated humidifiers on ventilation and gas exchange during weaning trial from mechanical ventilation. Chest. 1996;110:1294–8.

    PubMed  Google Scholar 

  91. Pelosi P, Solca M, Ravagnan I, Tubiolo D, Ferrario L, Gattinioni L. Effects of heat and moisture exchangers on minute ventilation, ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory failure. Crit Care Med. 1996;24:1184–8.

    CAS  PubMed  Google Scholar 

  92. Campbell RS, Davis K Jr, Johannigman JA, Branson RD. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients. Respir Care. 2000;45:306–12.

    CAS  PubMed  Google Scholar 

  93. Hinkson CR, Benson MS, Stephens LM, Deem S. The effects of apparatus dead space on P(aCO2) in patients receiving lung-protective ventilation. Respir Care. 2006;51:1140–4.

    PubMed  Google Scholar 

  94. Moran I, Bellapart J, Vari A, Mancebo J. Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med. 2006;32:524–31.

    PubMed  Google Scholar 

  95. Prat G, Renault A, Tonnelier JM, et al. Influence of the humidification device during acute respiratory distress syndrome. Intensive Care Med. 2003;29:2211–5.

    PubMed  Google Scholar 

  96. Prin S, Chergui K, Augarde R, Page B, Jardin F, Veillard-Baron A. Ability and safety of a heated humidifier to control hypercapnic acidosis in severe ARDS. Intensive Care Med. 2002;28:1756–60.

    PubMed  Google Scholar 

  97. Richecoeur J, Lu Q, Vieira SR, et al. Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160:77–85.

    CAS  PubMed  Google Scholar 

  98. Pitoni S, D'Arrigo S, Grieco DL, et al. Tidal volume lowering by instrumental dead space reduction in brain-injured ARDS patients: effects on Respiratory mechanics, gas exchange, and cerebral hemodynamics. Neurocrit Care. 2020;34(1):21–30.

    PubMed Central  Google Scholar 

  99. Lellouche F. Decrease dead space prior to calling the ECMO! Chest. 2021;159:1682–3.

    PubMed  Google Scholar 

  100. Lellouche F, Grieco DL, Maggiore SM, Antonelli M. Instrumental dead space in ventilator management. Lancet Respir Med. 2021;9(3):e22.

    CAS  PubMed  Google Scholar 

  101. Hilbert G. Difficult to wean chronic obstructive pulmonary disease patients: avoid heat and moisture exchangers? Crit Care Med. 2003;31:1580–1.

    PubMed  Google Scholar 

  102. Djedaini K, Billiard M, Mier L, et al. Changing heat and moisture exchangers every 48 hours rather than 24 hours does not affect their efficacy and the incidence of nosocomial pneumonia. Am J Respir Crit Care Med. 1995;152:1562–9.

    CAS  PubMed  Google Scholar 

  103. Markowicz P, Ricard JD, Dreyfuss D, et al. Safety, efficacy, and cost-effectiveness of mechanical ventilation with humidifying filters changed every 48 hours: a prospective, randomized study. Crit Care Med. 2000;28:665–71.

    CAS  PubMed  Google Scholar 

  104. Branson R, Davis J, Brown R. Comparison of three humidification techniques during mechanical ventilation: patient selection, cost, and infection considerations. Respir Care. 1996;41:809–16.

    Google Scholar 

  105. Dreyfuss D, Djedaini K, Weber P, et al. Prospective study of nosocomial pneumonia and of patient and circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change. Am Rev Respir Dis. 1991;143:738–43.

    CAS  PubMed  Google Scholar 

  106. Fink JB, Krause SA, Barrett L, Schaaff D, Alex CG. Extending ventilator circuit change interval beyond 2 days reduces the likelihood of ventilator-associated pneumonia. Chest. 1998;113:405–11.

    CAS  PubMed  Google Scholar 

  107. Hess D, Burns E, Romagnoli D, Kacmarek RM. Weekly ventilator circuit changes. A strategy to reduce costs without affecting pneumonia rates. Anesthesiology. 1995;82:903–11.

    CAS  PubMed  Google Scholar 

  108. Kollef MH, Shapiro SD, Fraser VJ, et al. Mechanical ventilation with or without 7-day circuit changes. A randomized controlled trial. Ann Intern Med. 1995;123:168–74.

    CAS  PubMed  Google Scholar 

  109. Long MN, Wickstrom G, Grimes A, Benton CF, Belcher B, Stamm AM. Prospective, randomized study of ventilator-associated pneumonia in patients with one versus three ventilator circuit changes per week. Infect Control Hosp Epidemiol. 1996;17:14–9.

    CAS  PubMed  Google Scholar 

  110. Daumal F, Colpart E, Manoury B, Mariani M, Daumal M. Changing heat and moisture exchangers every 48 hours does not increase the incidence of nosocomial pneumonia. Infect Control Hosp Epidemiol. 1999;20:347–9.

    CAS  PubMed  Google Scholar 

  111. Boyer A, Thiery G, Lasry S, et al. Long-term mechanical ventilation with hygroscopic heat and moisture exchangers used for 48 hours: a prospective clinical, hygrometric, and bacteriologic study. Crit Care Med. 2003;31:823–9.

    PubMed  Google Scholar 

  112. Branson R. Humidification for patients with artificial airways. Respir Care. 1999;44:630–41.

    Google Scholar 

  113. Memish Z, Oni G, Djazmati W, Cunningham G, Mah M. A randomized clinical trial to compare the effects of a heat and moisture exchanger with a heated humidifying system on the occurrence rate of ventilator-associated pneumonia. Am J Infect Control. 2001;29:301–5.

    CAS  PubMed  Google Scholar 

  114. Williams RB. The effects of excessive humidity. Respir Care Clin N Am. 1998;4:215–28.

    CAS  PubMed  Google Scholar 

  115. Panchamia RK, Piracha MM, Samuels JD. Desperate times: repurposing anesthesia machines for mechanical ventilation in COVID-19. J Clin Anesth. 2020;66:109967.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sugimoto R, Kenzaka T, Fujikawa M, Kawasaki S, Nishisaki H. Humidifier use and prone positioning in a patient with severe COVID-19 pneumonia and endotracheal tube impaction due to highly viscous sputum. Cureus. 2020;12:e8626.

    PubMed  PubMed Central  Google Scholar 

  117. van Boven EA, van Duin S, Ponssen HH. Endotracheal tube obstruction in patients diagnosed with COVID-19. Netherland J Crit Care. 2021;29:102–3.

    Google Scholar 

  118. Lellouche F, Taillé S, Maggiore SM, et al. Influence of ambient and ventilator output temperatures on performance of new heated humidifiers. Am J Respir Crit Care Med. 2002;165:A788.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lellouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lellouche, F. (2023). Humidification During Invasive Mechanical Ventilation. In: Esquinas, A.M. (eds) Humidification in the Intensive Care Unit. Springer, Cham. https://doi.org/10.1007/978-3-031-23953-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23953-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23952-6

  • Online ISBN: 978-3-031-23953-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics