Skip to main content

NADPH Oxidases in Arthropods

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

Arthropods, especially insects, have been used as physiological models for over a century. Once the microbicidal action of reactive oxygen species produced by mammalian phagocytes was discovered, many arthropods were studied and showed adaptative ROS production in immune defense against pathogenic microorganisms, but also in different physiological situations such as cuticle stabilization, muscle contraction, tissue regeneration and fertility, among other biological roles. Among eukaryotes, arthropods comprise the most diverse group, one that is central to the ecology of all types of environments and has three NADPH oxidase (NOX) isoforms: NOX5, dual oxidase (DUOX) and the arthropod-specific NOX4-art. However, studies are still limited to a few model organisms and biological contexts. In this chapter, we will provide an overview of NOXes found in different groups of arthropods, discuss their roles in physiology, and show how this group contributes to elucidating the evolution of NOX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leucocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744. https://doi.org/10.1172/JCI107236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguirre J, Lambeth JD (2010) Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med 49:1342–1353. https://doi.org/10.1016/j.freeradbiomed.2010.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Krause K-H, Xenarios I et al (2013) Evolution of the Ferric Reductase Domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 8:e58126. https://doi.org/10.1371/journal.pone.0058126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109. https://doi.org/10.1186/1471-2148-7-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277. https://doi.org/10.1111/j.1742-4658.2008.06488.x

    Article  CAS  PubMed  Google Scholar 

  7. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  8. Gandara ACP, Torres A, Bahia AC et al (2017) Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase. BMC Evol Biol 17:92. https://doi.org/10.1186/s12862-017-0940-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edens W, Sharling L, Cheng G et al (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154:879–892. https://doi.org/10.1083/jcb.200103132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anh NTT, Nishitani M, Harada S et al (2011) Essential role of Duox in stabilization of Drosophila Wing. J Biol Chem 286:33244–33251. https://doi.org/10.1074/jbc.M111.263178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dias FA, Gandara ACP, Queiroz-Barros FG et al (2013) Ovarian Dual Oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing. J Biol Chem 288:35058–35067. https://doi.org/10.1074/jbc.M113.522201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hurd TR, Liang F-X, Lehmann R (2015) Curly encodes dual oxidase, which acts with heme peroxidase Curly Su to shape the adult Drosophila Wing. PLoS Genet 11:e1005625. https://doi.org/10.1371/journal.pgen.1005625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park Y, Stanley DW, Kim Y (2015) Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes. J Insect Physiol 79:63–72. https://doi.org/10.1016/j.jinsphys.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Ha E-M, Oh C-T, Bae YS, Lee W-J (2005) A direct role for dual oxidase in Drosophila gut immunity. Science (80–)310:847–850. https://doi.org/10.1126/science.1117311

    Article  CAS  Google Scholar 

  15. Maria, Shaka Aranzazu, Arias-Rojas Alexandra, Hrdina Dagmar, Frahm Igor, Iatsenko Eric, Oswald (2022) Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLOS Pathogens 18(9) e1010825-10.1371/journal.ppat.1010825 10.1371/journal.ppat.1010825

    Google Scholar 

  16. Kumar S, Molina-Cruz A, Gupta L et al (2010) A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science (80–)327:1644–1648. https://doi.org/10.1126/science.1184008

    Article  CAS  Google Scholar 

  17. Oliveira G d A, Lieberman J, Barillas-Mury C (2012) Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science (80–)335:856–859. https://doi.org/10.1126/science.1209678

    Article  CAS  Google Scholar 

  18. Dupuy C, Ohayon R, Valent A et al (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. J Biol Chem 274:37265–37269. https://doi.org/10.1074/jbc.274.52.37265

    Article  CAS  PubMed  Google Scholar 

  19. Kumar S, Gupta L, Han YS, Barillas-Mury C (2004) Inducible peroxidases mediate nitration of anopheles midgut cells undergoing apoptosis in response to plasmodium invasion. J Biol Chem 279:53475–53482. https://doi.org/10.1074/jbc.M409905200

    Article  CAS  PubMed  Google Scholar 

  20. Palmer WJ, Jiggins FM (2015) Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol Biol Evol 32:2111–2129. https://doi.org/10.1093/molbev/msv093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang H-T, Yang M-C, Sun J-J et al (2016) Dual oxidases participate in the regulation of intestinal microbiotic homeostasis in the kuruma shrimp Marsupenaeus japonicus. Dev Comp Immunol 59:153–163. https://doi.org/10.1016/j.dci.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  22. Messner B (1976) NADH-bzw. NADPH-oxidase-Aktivität in den Blutzellen hemi- und holometaboler Insekten. Acta Histochem 56:261–269. https://doi.org/10.1016/S0065-1281(76)80114-6

    Article  CAS  PubMed  Google Scholar 

  23. Esteves E, Lara FA, Lorenzini DM et al (2008) Cellular and molecular characterization of an embryonic cell line (BME26) from the tick Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol 38:568–580. https://doi.org/10.1016/j.ibmb.2008.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalil SP, Da Rosa RD, Capelli-Peixoto J et al (2017) Immune-related redox metabolism of embryonic cells of the tick Rhipicephalus microplus (BME26) in response to infection with Anaplasma marginale. Parasit Vectors 10:613. https://doi.org/10.1186/s13071-017-2575-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang X, Smith AA, Williams MS, Pal U (2014) A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of lyme disease pathogens within the vector. J Biol Chem 289:12813–12822. https://doi.org/10.1074/jbc.M113.538272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inada M, Kihara K, Kono T et al (2013) Deciphering of the Dual oxidase (Nox family) gene from kuruma shrimp, Marsupenaeus japonicus: full-length cDNA cloning and characterization. Fish Shellfish Immunol 34:471–485. https://doi.org/10.1016/j.fsi.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  27. Sun Z, Hao S, Gong Y et al (2018) Dual oxidases participate in the regulation of hemolymph microbiota homeostasis in mud crab Scylla paramamosain. Dev Comp Immunol 89:111–121. https://doi.org/10.1016/j.dci.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  28. Hu X, Yang R, Zhang X et al (2013) Molecular Cloning and Functional Characterization of the Dual Oxidase (BmDuox) Gene from the Silkworm Bombyx mori. PLoS One 8:e70118. https://doi.org/10.1371/journal.pone.0070118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Wang Y, Lu Z (2015) Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori. J Zhejiang Univ B 16:875–882. https://doi.org/10.1631/jzus.B1500060

    Article  CAS  Google Scholar 

  30. Zhang X, Feng H, He J, Liang X, Zhang N, Shao Y, Zhang F, Lu X (2022) Pest Manag Sci 78(6):2215–2227. 10.1002/ps.6846

    Google Scholar 

  31. Sajjadian SM, Kim Y (2020) Dual oxidase-derived reactive oxygen species against Bacillus thuringiensis and its suppression by eicosanoid biosynthesis inhibitors. Front Microbiol 11:1–16. https://doi.org/10.3389/fmicb.2020.00528

    Article  Google Scholar 

  32. Sajjadian SM, Kim Y (2020) PGE 2 upregulates gene expression of dual oxidase in a lepidopteran insect midgut via cAMP signalling pathway. Open Biol 10:200197. https://doi.org/10.1098/rsob.200197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marzieh, Attarianfar Azam, Mikani Mohammad, Mehrabadi (2023) The endocrine disruptor fenoxycarb modulates gut immunity and gut bacteria titer in the cotton bollworm Helicoverpa armigera. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 264109507-S1532045622002423 109507 10.1016/j.cbpc.2022.109507

    Google Scholar 

  34. Roy MC, Ahmed S, Kim Y (2022) Dorsal switch protein 1 as a damage signal in insect gut immunity to activate dual oxidase via an eicosanoid PGE2. Front Immunol 13:994626. 10.3389/fimmu.2022.994626

    Google Scholar 

  35. Windfelder AG, Müller FH, Mc Larney B, Hentschel M, Böhringer AC, Von Bredow CR, Leinberger FH, Kampschulte M, Maier L, von Bredow YM, Flocke V, Merzendorfer H, Krombach GA, Vilcinskas A, Grimm J, Trenczek TE, Flögel U (2022) High-throughput screening of caterpillars as a platform to study host–microbe interactions and enteric immunity. Nat Commun 13(1):7216. 10.1038/s41467-022-34865-7

    Google Scholar 

  36. Dennison NJ, Jupatanakul N, Dimopoulos G (2014) The mosquito microbiota influences vector competence for human pathogens. Curr Opin Insect Sci 3:6–13. https://doi.org/10.1016/j.cois.2014.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kakani P, Kajla M, Choudhury TP et al (2019) Anopheles stephensi dual oxidase silencing activates the thioester-containing protein 1 pathway to suppress plasmodium development. J Innate Immun 11:496–505. https://doi.org/10.1159/000497417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bombaça ACS, Gandara ACP, Ennes-Vidal V et al (2021) Aedes aegypti infection with trypanosomatid Strigomonas culicis alters midgut redox metabolism and reduces mosquito reproductive fitness. Front Cell Infect Microbiol 11:1–17. https://doi.org/10.3389/fcimb.2021.732925

    Article  CAS  Google Scholar 

  39. Wei G, Lai Y, Wang G et al (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci 114:5994–5999. https://doi.org/10.1073/pnas.1703546114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. José L., Ramirez Christopher A., Dunlap Ephantus J., Muturi Ana B. F., Barletta Alejandro P., Rooney Roberto, Barrera (2018) Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLOS Neglected Tropical Diseases 12(4) e0006433-10.1371/journal.pntd.0006433 10.1371/journal.pntd.0006433

    Google Scholar 

  41. Ahmed S, Sajjadian SM, Kim Y (2022) HMGB1-like dorsal switch protein 1 triggers a damage signal in mosquito gut to activate dual oxidase via eicosanoids. J Innate Immun 14(6):657-672. 10.1159/000524561

    Google Scholar 

  42. Oliveira JHM, Gonçalves RLS, Lara FA et al (2011) Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog 7:e1001320. https://doi.org/10.1371/journal.ppat.1001320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao X, Yang L, Pang X et al (2017) A Mesh–Duox pathway regulates homeostasis in the insect gut. Nat Microbiol 2:17020. https://doi.org/10.1038/nmicrobiol.2017.20

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zeng T, Su HA, Liu YL, Li JF, Jiang DX, Lu YY, Qi YX (2022) Serotonin modulates insect gut bacterial community homeostasis. BMC Biol 20(1):105. 10.1186/s12915-022-01319-x

    Google Scholar 

  45. Silveira GO, Talyuli OAC, Walter-Nuno AB, Crnkovi A, Gandara ACP, Gaviraghi A, Bottino-Rojas V, S­ll D, Polycarpo C (2022) An Aedes aegypti seryl-tRNA synthetase paralog controls bacteroidetes growth in the midgut. bioRxiv 2022.08.25.505225. 10.1101/2022.08.25.505225

    Google Scholar 

  46. Talyuli OAC, Oliveira JHM, Bottino-Rojas V, Silveira GO, Alvarenga PH, Barletta ABF, Kantor AM, Paiva-Silva GO, Barillas-Mury C, Oliveira PL (2023) The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme–induced peroxidase. PLoS Pathogens 10.1371/journal.ppat.1011149

    Google Scholar 

  47. Ha E-M, Lee K-A, Park SH et al (2009) Regulation of DUOX by the Gαq-Phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16:386–397. https://doi.org/10.1016/j.devcel.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  48. Ha E-M, Lee K-A, Seo YY et al (2009) Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nat Immunol 10:949–957. https://doi.org/10.1038/ni.1765

    Article  CAS  PubMed  Google Scholar 

  49. Ahn H-M, Lee K-S, Lee D-S, Yu K (2012) JNK/FOXO mediated PeroxiredoxinV expression regulates redox homeostasis during Drosophila melanogaster gut infection. Dev Comp Immunol 38:466–473. https://doi.org/10.1016/j.dci.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  50. Lee K-A, Kim S-H, Kim E-K et al (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797–811. https://doi.org/10.1016/j.cell.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  51. Lee K-A, Kim B, Bhin J et al (2015) Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via hedgehog-induced signaling endosomes. Cell Host Microbe 17:191–204. https://doi.org/10.1016/j.chom.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  52. Lee K-A, Kim B, You H, Lee W-J (2015) Uracil-induced signaling pathways for DUOX-dependent gut immunity. Fly (Austin) 9:115–120. https://doi.org/10.1080/19336934.2015.1126011

    Article  PubMed  Google Scholar 

  53. Kim E-K, Lee K-A, Hyeon DY et al (2020) Bacterial nucleoside catabolism controls quorum sensing and commensal-to-pathogen transition in the Drosophila gut. Cell Host Microbe 27:345–357.e6. https://doi.org/10.1016/j.chom.2020.01.025

    Article  CAS  PubMed  Google Scholar 

  54. Ozakman Y, Raval D, Eleftherianos I (2021) Activin and BMP signaling activity affects different aspects of host anti-nematode immunity in Drosophila melanogaster. Front Immunol 12:795331. 10.3389/fimmu.2021.795331

    Google Scholar 

  55. Ozakman Y, Eleftherianos I (2019) TGF-β signaling interferes with the Drosophila innate immune and metabolic response to parasitic nematode infection. Front Physiol 10:716. 10.3389/fphys.2019.00716

    Google Scholar 

  56. Chakrabarti S, Poidevin M, Lemaitre B (2014) The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. PLoS Genet 10:e1004659. https://doi.org/10.1371/journal.pgen.1004659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee K-A, Cho K-C, Kim B et al (2018) Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut immunity in Drosophila. Cell Host Microbe 23:338–352.e5. https://doi.org/10.1016/j.chom.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  58. Yao Z, Wang A, Li Y et al (2016) The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. ISME J 10:1037–1050. https://doi.org/10.1038/ismej.2015.202

    Article  CAS  PubMed  Google Scholar 

  59. Chmiel JA, Daisley BA, Burton JP, Reid G (2019) Deleterious effects of neonicotinoid pesticides on drosophila melanogaster immune pathways. MBio 10. https://doi.org/10.1128/mBio.01395-19

  60. Huang Y, Yu Y, Zhan S et al (2020) Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L. PLoS One 15:e0225873. https://doi.org/10.1371/journal.pone.0225873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li F, Li M, Zhu Q et al (2021) Imbalance of intestinal microbial homeostasis caused by acetamiprid is detrimental to resistance to pathogenic bacteria in Bombyx mori. Environ Pollut 289:117866. https://doi.org/10.1016/j.envpol.2021.117866

    Article  CAS  PubMed  Google Scholar 

  62. Weiss BL, Wang J, Maltz MA et al (2013) Trypanosome infection establishment in the Tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog 9:e1003318. https://doi.org/10.1371/journal.ppat.1003318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23:424–429. https://doi.org/10.1016/j.cub.2013.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Evans CJ, Liu T, Girard JR, Banerjee U (2022) Proc Natl Acad Sci 119(12):e2119109119. 10.1073/pnas.2119109119

    Google Scholar 

  65. Moreira S, Stramer B, Evans I, Wood W, Martin P (2010) Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr Biol 20(5):464-470. 10.1016/j.cub.2010.01.047

    Google Scholar 

  66. Amcheslavsky A, Wang S, Fogarty CE et al (2018) Plasma membrane localization of apoptotic caspases for non-apoptotic functions. Dev Cell 45:450–464.e3. https://doi.org/10.1016/j.devcel.2018.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fogarty CE, Diwanji N, Lindblad JL et al (2016) Extracellular reactive oxygen species drive apoptosis-induced proliferation via drosophila macrophages. Curr Biol 26:575–584. https://doi.org/10.1016/j.cub.2015.12.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chakrabarti S, Visweswariah SS (2020) Intramacrophage ROS primes the innate immune system via JAK/STAT and toll activation. Cell Rep 33:108368. https://doi.org/10.1016/j.celrep.2020.108368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. D’Souza LC, Kuriakose N, Raghu SV, Kabekkodu SP, Sharma A (2022) ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radic Biol Med 193:190-201. 10.1016/j.freeradbiomed.2022.10.002

    Google Scholar 

  70. Juarez MT, Patterson RA, Sandoval-Guillen E, McGinnis W (2011) Duox Flotillin-2 and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila. PLoS Genet 7(12): e1002424. 10.1371/journal.pgen.1002424

    Google Scholar 

  71. Liu W, Lim KL, Tan EK (2022) Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson’s disease in Drosophila. Transl Neurodegener 11(1):44. 10.1186/s40035-022-00318-w

    Google Scholar 

  72. Li Y, Bai P, Wei L, Kang R, Chen L, Zhang M, Tan EK, Liu W (2020) Capsaicin functions as drosophila ovipositional repellent and causes intestinal dysplasia. Sci Rep 10(1):9963. 10.1038/s41598-020-66900-2

    Google Scholar 

  73. Xie X, Hu J, Liu X et al (2010) NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. Int J Biol Sci 6:252–267. https://doi.org/10.7150/ijbs.6.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khan SJ, Abidi SNF, Skinner A et al (2017) The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 13:e1006937. https://doi.org/10.1371/journal.pgen.1006937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andersen SO (1963) Characterization of a new type of cross-linkage in resilin, a rubber-like protein. Biochim Biophys Acta 69:249–262. https://doi.org/10.1016/0006-3002(63)91258-7

    Article  CAS  PubMed  Google Scholar 

  76. Locke M (1969) The localization of a peroxidase associated with hard cuticle formation in an insect, Calpodes ethlius stoll, lepidoptera, hesperiidae. Tissue Cell 1:555–574. https://doi.org/10.1016/S0040-8166(69)80021-2

    Article  CAS  PubMed  Google Scholar 

  77. Tirloni L, Braz G, Nunes RD et al (2020) A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 10:18296. https://doi.org/10.1038/s41598-020-75341-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Du EJ, Ahn TJ, Kwon I et al (2016) TrpA1 regulates defecation of food-borne pathogens under the control of the Duox pathway. PLoS Genet 12:e1005773. https://doi.org/10.1371/journal.pgen.1005773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jang W, Baek M, Han YS, Kim C (2018) Duox mediates ultraviolet injury-induced nociceptive sensitization in Drosophila larvae. Mol Brain 11:16. https://doi.org/10.1186/s13041-018-0358-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baek M, Jang W, Kim C (2022) Dual oxidase, a hydrogen-peroxide-producing enzyme, regulates neuronal oxidative damage and animal lifespan in Drosophila melanogaster. Cell 11:2059. https://doi.org/10.3390/cells11132059

    Article  CAS  Google Scholar 

  81. Barati A, Masoudi R, Yousefi R, Monsefi M, Mirshafiey A (2022) Tau and amyloid beta differentially affect the innate immune genes expression in Drosophila models of Alzheimer’s disease and β- D Mannuronic acid (M2000) modulates the dysregulation. Gene 808:145972. 10.1016/j.gene.2021.145972

    Google Scholar 

  82. Zhang Y, Liu C, Jin R et al (2021) Dual oxidase-dependent reactive oxygen species are involved in the regulation of UGT overexpression-mediated clothianidin resistance in the brown planthopper, Nilaparvata lugens. Pest Manag Sci 77:4159–4167. https://doi.org/10.1002/ps.6453

    Article  CAS  PubMed  Google Scholar 

  83. Kizhedathu A, Chhajed P, Yeramala L et al (2021) Duox-generated reactive oxygen species activate ATR/Chk1 to induce G2 arrest in Drosophila tracheoblasts. elife 10:1–18. https://doi.org/10.7554/eLife.68636

    Article  Google Scholar 

  84. Jang S, Mergaert P, Ohbayashi T et al (2021) Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc Natl Acad Sci 118:e2020922118. https://doi.org/10.1073/pnas.2020922118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bánfi B, Molnár G, Maturana A et al (2001) A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601. https://doi.org/10.1074/jbc.M103034200

    Article  PubMed  Google Scholar 

  86. Ribeiro JC (1996) NAD(P)H-dependent production of oxygen reactive species by the salivary glands of the mosquito Anopheles albimanus. Insect Biochem Mol Biol 26:715–720. https://doi.org/10.1016/S0965-1748(96)00040-9

    Article  CAS  PubMed  Google Scholar 

  87. Whitten MMA, Ratcliffe NA (1999) In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaberus discoidalis. J Insect Physiol 45:667–675. https://doi.org/10.1016/S0022-1910(99)00039-6

    Article  CAS  PubMed  Google Scholar 

  88. Whitten MMA, Mello CB, Gomes SAO et al (2001) Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Exp Parasitol 98:44–57. https://doi.org/10.1006/expr.2001.4615

    Article  CAS  PubMed  Google Scholar 

  89. Bergin D, Reeves EP, Renwick J et al (2005) Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170. https://doi.org/10.1128/IAI.73.7.4161-4170.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Renwick J, Reeves EP, Wientjes FB, Kavanagh K (2007) Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of Galleria mellonella. Dev Comp Immunol 31:347–359. https://doi.org/10.1016/j.dci.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  91. Fallon JP, Reeves EP, Kavanagh K (2011) The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes. Microbiology 157:1481–1488. https://doi.org/10.1099/mic.0.043786-0

    Article  CAS  PubMed  Google Scholar 

  92. Kawahara T, Lambeth JD (2007) Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes. BMC Evol Biol 7:178. https://doi.org/10.1186/1471-2148-7-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alberdi P, Cabezas-Cruz A, Prados PE et al (2019) The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Sci Rep 9:13236. https://doi.org/10.1038/s41598-019-49766-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Inada M, Sudhakaran R, Kihara K et al (2012) Molecular cloning and characterization of the NADPH oxidase from the kuruma shrimp, Marsupenaeus japonicus: Early gene up-regulation after Vibrio penaeicida and poly(I:C) stimulations in vitro. Mol Cell Probes 26:29–41. https://doi.org/10.1016/j.mcp.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  95. Vidya N, Thiagarajan R, Arumugam M (2007) In vitro generation of superoxide anion by the hemocytes of Macrobrachium rosenbergii: possible mechanism and pathways. J Exp Zool Part A Ecol Genet Physiol 307A:383–396. https://doi.org/10.1002/jez.393

    Article  CAS  Google Scholar 

  96. Li M, Wang J, Song S, Li C (2016) Molecular characterization of a novel nitric oxide synthase gene from Portunus trituberculatus and the roles of NO/O2−-generating and antioxidant systems in host immune responses to Hematodinium. Fish Shellfish Immunol 52:263–277. https://doi.org/10.1016/j.fsi.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  97. Ren X, Lv J, Gao B et al (2017) Immune response and antioxidant status of Portunus trituberculatus inoculated with pathogens. Fish Shellfish Immunol 63:322–333. https://doi.org/10.1016/j.fsi.2017.02.034

    Article  CAS  PubMed  Google Scholar 

  98. Xian J-A, Zhang X-X, Wang A-L et al (2018) Oxidative burst activity in haemocytes of the freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol 73:272–278. https://doi.org/10.1016/j.fsi.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  99. Selot R, Kumar V, Shukla S et al (2007) Identification of a Soluble NADPH Oxidoreductase (BmNOX) with antiviral activites in the gut juice of Bombyx mori. Biosci Biotechnol Biochem 71:200–205. https://doi.org/10.1271/bbb.60450

    Article  CAS  PubMed  Google Scholar 

  100. Garver LS, de Almeida Oliveira G, Barillas-Mury C (2013) The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity. PLoS Pathog 9:e1003622. https://doi.org/10.1371/journal.ppat.1003622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu F, Zheng H, Chen S et al (2022) Malaria oocysts require circumsporozoite protein to evade mosquito immunity. Nat Commun 13:3208. https://doi.org/10.1038/s41467-022-30988-z

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jones RM, Luo L, Ardita CS et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028. https://doi.org/10.1038/emboj.2013.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jones RM, Desai C, Darby TM et al (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12:1217–1225. https://doi.org/10.1016/j.celrep.2015.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Iatsenko I, Boquete J-P, Lemaitre B (2018) Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens Drosophila lifespan. Immunity 49:929–942.e5. https://doi.org/10.1016/j.immuni.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  105. West C, Silverman N (2018) p38b and JAK-STAT signaling protect against Invertebrate iridescent virus 6 infection in Drosophila. PLoS Pathog 14:e1007020. https://doi.org/10.1371/journal.ppat.1007020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ritsick DR, Edens W, Finnerty V, Lambeth JD (2007) Nox regulation of smooth muscle contraction. Free Radic Biol Med 43:31–38. https://doi.org/10.1016/j.freeradbiomed.2007.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Montezano AC, De Lucca Camargo L, Persson P et al (2018) NADPH oxidase 5 is a pro-contractile nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function. J Am Heart Assoc 7. https://doi.org/10.1161/JAHA.118.009388

  108. Gandara ACP, Dias FA, de Lemos PC et al (2021) Urate and NOX5 control blood digestion in the hematophagous insect Rhodnius prolixus. Front Physiol 12:1–11. https://doi.org/10.3389/fphys.2021.633093

    Article  Google Scholar 

  109. Srinivasan N, Gordon O, Ahrens S et al (2016) Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. elife 5:1–25. https://doi.org/10.7554/eLife.19662

    Article  CAS  Google Scholar 

  110. Chartier FJ-M, Hardy ÉJ-L, Laprise P (2012) Crumbs limits oxidase-dependent signaling to maintain epithelial integrity and prevent photoreceptor cell death. J Cell Biol 198:991–998. https://doi.org/10.1083/jcb.201203083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Patel PH, Pénalva C, Kardorff M et al (2019) Damage sensing by a Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the adult Drosophila midgut. Nat Commun 10:4365. https://doi.org/10.1038/s41467-019-12336-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fujisawa Y, Shinoda N, Chihara T, Miura M (2020) ROS regulate caspase-dependent cell delamination without Apoptosis in the Drosophila Pupal Notum. iScience 23:101413. https://doi.org/10.1016/j.isci.2020.101413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tzou F-Y, Su T-Y, Lin W-S et al (2021) Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep 35:108972. https://doi.org/10.1016/j.celrep.2021.108972

    Article  CAS  PubMed  Google Scholar 

  114. Dias FA, Gandara ACP, Perdomo HD et al (2016) Identification of a selenium-dependent glutathione peroxidase in the blood-sucking insect Rhodnius prolixus. Insect Biochem Mol Biol 69:105–114. https://doi.org/10.1016/j.ibmb.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  115. Peng L-Y, Dai Z-W, Yang R-R et al (2020) NADPH oxidase 5 is essential for molting and oviposition in a rice Planthopper Nilaparvata lugens. Insects 11:642. https://doi.org/10.3390/insects11090642

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li W, Young JF, Sun J (2018) NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc Natl Acad Sci USA 115:776–7770. https://doi.org/10.1073/pnas.1800115115

    Article  CAS  Google Scholar 

  117. Lang S, Hilsabeck TA, Wilson KA et al (2019) A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. PLoS Genet 15:e1008318. https://doi.org/10.1371/journal.pgen.1008318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martyn KD, Frederick LM, von Loehneysen K et al (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82. https://doi.org/10.1016/j.cellsig.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  119. Lyle AN, Deshpande NN, Taniyama Y et al (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105:249–259. https://doi.org/10.1161/CIRCRESAHA.109.193722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pan X, Zhou G, Wu J et al (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci 109:E23–E31. https://doi.org/10.1073/pnas.1116932108

    Article  PubMed  Google Scholar 

  121. Jin R, Xiao Z, Nakai M, Huang GH (2023) Pest Manag Sci 79(3):1123-1130. 10.1002/ps.7284

    Google Scholar 

  122. Hajjar C, Cherrier MV, Dias Mirandela G et al (2017) The NOX family of proteins is also present in bacteria. MBio 8. https://doi.org/10.1128/mBio.01487-17

  123. Hewitt OH, Degnan SM (2022) Distribution and diversity of ROS-generating enzymes across the animal kingdom with a focus on sponges (Porifera). BMC Biol 20(1) 212. 10.1186/s12915-022-01414-z

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. José Henrique Oliveira for critical review of this chapter and Dr. Martha Sorenson for reviewing the English.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandara, A.C.P., Oliveira, P.L. (2023). NADPH Oxidases in Arthropods. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_28

Download citation

Publish with us

Policies and ethics