Skip to main content

Flexible-High-Conducting Polymer-In-Salt-Electrolyte (PISE) Membranes: A Reality Due to Crosslinked-Starch Polymer Host

  • Chapter
  • First Online:
Handbook of Nanocomposite Supercapacitor Materials IV

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 331))

  • 397 Accesses

Abstract

Polymer-electrolytes, used in commercial energy devices, need to have small liquid components to achieve the desired electrochemical properties. Besides this, these polymer electrolytes have a low cationic transference number and slow ion movement. To get rid of these drawbacks, polymer-in-salt-electrolytes (PISEs) were hypothesized in the 1990s. In PISEs, ion transport is decoupled from polymer segment movement and it occurs through ion cluster, resulting in much faster ion transport in comparison to SIPEs (salt-in-polymer-electrolytes) and cationic transference number is also supposed to approach 1. Unfortunately, a polymer host which can accommodate a large amount of salt above the threshold value required for continuous ion cluster formation, and retain mechanical properties, is still to be identified. Till now, the approach has been to get a mixture of salts in the molten state and then add a small amount of polymer to get a solid morphology. Even after trying a variety of permutation combinations of salt, polymers, and additives, the targeted conductivity (10–4 S/cm) along with good mechanical properties is rarely reported. Owing to the state-of-art of electronic device technology which has reached to flexible device stage, the present-day energy devices (and hence the electrolytes) need to be flexible. Recently, a facile protocol, which does not use any sophisticated instruments and/or complicated chemical procedures, for the synthesis of PISEs using starch (a renewable polymer) as host polymer, has been reported. Conductivity up to 0.1 S/cm has been achieved in the flexible (bendable, stretchable, and twistable) morphology which can be easily cut into different shapes and sizes. Electrochemical-Stability-Window (ESW) is also quite good (>2.5 V). These electrolytes are quite stable with respect to ambient change. Presently, a new concept of Water-In-Polymer-Salt-Electrolyte (WIPSE) is being investigated. Because of the water-absorbing nature of starches, starch-based PISEs seem to inherently have this benefit also, and probably it is the reason for the exceptionally high conductivity observed in these materials. To the best of the author’s knowledge such high conducting, flexible, and economical PISE membranes were not reported in literature except for crosslinked-starch polymer host-based membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 4, 10038 (2016)

    Article  CAS  Google Scholar 

  2. W. Münchgesang, P. Meisner, G. Yushin, AIP Conf. Proc. 1597, 196 (2014)

    Article  Google Scholar 

  3. K. Fic, A. Platek, J. Piwek, E. Frackowiak, Materials Today, 21(4) (2018)

    Google Scholar 

  4. V.A. Oltean, S. Renault, M. Valvo, D. Brandell, Materials 9, 142 (2016)

    Article  Google Scholar 

  5. F. B. Dias, L. Plomp, Jakobert, B.J. Veldhuis, Journal of Power Sources 88, 169–191 (2000)

    Google Scholar 

  6. P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, X. Liu, Front. Chem. 7, 522 (2019)

    Article  CAS  Google Scholar 

  7. J.B. Kerr, Y.B. Han, G. Liu, C. Reeder, J. Xie, X. Sun, Electrochim. Acta 50, 235–242 (2004)

    Article  CAS  Google Scholar 

  8. C.Y. Son, Z.G. Wang, J. Chem. Phys. 153, 100903 (2020)

    Article  CAS  Google Scholar 

  9. Y. Zhang, P.S. Cremer, Curr. Opin. Chem. Biol. 10, 658–663 (2006)

    Article  CAS  Google Scholar 

  10. Y. Lu, J. Chen, Nature Reviews Chemistry. https://doi.org/10.1038/s41570-020-0160-9

  11. L. Wang, J. Li, G. Lu, W. Li, Q. Tao, C. Shi, H. Jin, G. Chen, S. Wang, Front. Mater. 7, 111 (2020)

    Article  Google Scholar 

  12. S. Palchoudhury, K. Ramasamy, R.K. Gupta, A. Gupta, Flexible supercapacitors: a materials perspective. Front. Mater. 5, 83 (2019). https://doi.org/10.3389/fmats.2018.00083

    Article  Google Scholar 

  13. H. Gao, N.S. Grundish, Y. Zhao, A. Zhou, J.B. Goodenough, Energy Material Advances 2021, Article ID 1932952, 10 pages. https://doi.org/10.34133/2021/1932952

  14. F.S. Genier, I.D. Hosein, Macromolecules 54, 8553–8562 (2021)

    Article  CAS  Google Scholar 

  15. H.K. Yoona, W.S. Chungb, N.J. Joa, Electrochemica Acta 50, 289–293 (2004)

    Article  Google Scholar 

  16. K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials III: Selection 1st ed. (Springer Series in Materials Science 313, 2021)

    Google Scholar 

  17. K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials II: Selection 1st ed. (Springer Series in Materials Science 313, 2021)

    Google Scholar 

  18. K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials I: Selection 1st ed. (Springer Series in Materials Science 313, 2021)

    Google Scholar 

  19. J.L.O. Martínez, L. Porcarelli, G.G. González, I. Calafel, M. Forsyth, D. Mecerreyes, A.J. Müller, A.C.S. Appl, Polym. Mater. 3(12), 6326–6337 (2021)

    Google Scholar 

  20. F. Makhlooghiazad, L.A. O’Dell, L. Porcarelli, C. Forsyth, N. Quazi, M. Asadi, O. Hutt, D. Mecerreyes, M. Forsyth, J.M Pringle, Nat Mater. 1–9 (2021)

    Google Scholar 

  21. H. Zhu, G. Huang, L.A. O’Dell, M. Forsyth, J. Phys. Chem. Lett. 12(40), 9853–9858 (2021)

    Article  CAS  Google Scholar 

  22. A.S. Vega, C.A. Saenz, L.A. O’Dell, F. Brusciotti, A. Somers, M. Forsyth, Applied Surface Science 561, 149881 (2021)

    Google Scholar 

  23. A.H. Shah, U.A. Rana, H. Zhu, J. Li, R. Vijayaraghavan, D.R. Macfarlane, M. Forsyth, H.M. Siddiqi, J. Phys. Chem. B 125(39), 11005–11016 (2021)

    Article  CAS  Google Scholar 

  24. G. Huang, L. Porcarelli, Y. Liang, M. Forsyth, H. Zhu, A.C.S. Appl, Energy Mater. 4(10), 10593–10602 (2021)

    CAS  Google Scholar 

  25. B. Roy, P. Cherepanov, C. Nguyen, C. Forsyth, U. Pal, T.C. Mendes, P. Howlett, M. Forsyth, D. MacFarlane, M. Kar, Adv. Energy Mater. 11(36), 2101422 (2021)

    Article  CAS  Google Scholar 

  26. C.M. Cholant, M.P. Rodrigues, L.L. Peres, R.D.C. Balboni, L.U. Krüger, D.N. Placido, W.H. Flores, A. Gündel, A. Pawlicka, C.O. Avellaneda, Journal of Solid State Electrochemistry 24, 1867–1875 (2020)

    Google Scholar 

  27. F.C. Sentanin, W.R. Caliman, R.C. Sabadini, C.C.S. Cavalheiro, R.F.P. Pereira, M.M. Silva, A. Pawlicka, Molecules 26, 2139 (2021)

    Article  CAS  Google Scholar 

  28. C.M. Cholant, L.U. Krüger, R.D.C. Balboni, M.P. Rodrigues, F.C. Tavares, L.L. Peres, W.H. Flores, A. Gündel, A. Pawlicka, C.O. Avellaneda, Ionics 26, 2941–2948 (2020)

    Article  CAS  Google Scholar 

  29. T. Winie, A.K. Arof, S.Thomas (ed.), Polymer Electrolytes: Characterization Techniques and Energy Applications (WILEY-VCH, December 2019)

    Google Scholar 

  30. H.J. Kang, J.W. Park, H.J. Hwang, H. Kim, K.S. Jang, X. Ji, H.J. Kim, W.B. Im, Y.S. Jun, Carbon Energy. 3, 976–990 (2021)

    Article  CAS  Google Scholar 

  31. X. Ji, C. Zhang, US Patent App. 17, 283,184 (2021)

    Google Scholar 

  32. X. Yu, A. Manthiram, Energy Adv., Advance Article (2022),

    Google Scholar 

  33. F. Zou, H.C. Nallan, A. Dolocan, Q. Xie, J. Li, B.M. Coffey, J.G. Ekerdt, A. Manthiram, Energy Storage Materials 43, 499–508 (2021)

    Article  Google Scholar 

  34. E. Quartarone, P. Mustarelli, J. Electrochem. Soc. 167, 050508 (2020)

    Article  CAS  Google Scholar 

  35. P.B. Balbuena, AIP Conf. Proc. 82, 1597 (2014)

    Google Scholar 

  36. M.B. Armand, J.M. Chabango, M. Duclot, Second international meeting on solid electrolytes (St. Andrews, Scotland, 1978), pp.20–22

    Google Scholar 

  37. D. Bresser, S. Lyonnard, C. Iojoiu, L. Picard, S. Passerini, Mol. Syst. Des. Eng. 4, 779 (2019)

    Article  CAS  Google Scholar 

  38. H. Du, Z. Wu, Y. Xu, S. Liu, H. Yang, Polymers 12, 297 (2020)

    Article  CAS  Google Scholar 

  39. J.H. Park, H.H. Rana, J.Y. Lee, H.S. Park, J. Mater. Chem. A 7, 16962 (2019)

    Article  CAS  Google Scholar 

  40. Md.Y. Bhat, N. Yadav, S.A. Hashmi, Mater. Sci. Eng., B 262, 114721 (2020)

    Article  CAS  Google Scholar 

  41. Z. Florjan, E.Z. Monikowska, W. Wieczorek, A. Ryszawy, A. Tomaszewska, K. Fredman, D. Golodnitsky, E. Peled, B. Scrosati, J. Phys. Chem. B 108, 14907–14914 (2004)

    Article  Google Scholar 

  42. J. Fan, R.F. Marzke, C.A. Angell, Mat. Res. Soc. Symp. Proc. 293, 87–92 (1993)

    Article  CAS  Google Scholar 

  43. C.A. Angell, C. Liu, E. Sanchez, Nature 362, 137 (1993)

    Article  CAS  Google Scholar 

  44. C.A. Angell, Annu. Rev. Phys. Chern. 43, 693–717 (1992)

    Article  CAS  Google Scholar 

  45. W. Xu, L. M. Wang, C.A. Angell, Electrochimica Acta 48, 2037/2045 (2003)

    Google Scholar 

  46. W. Liu, C. Yi, L. Li, S. Liu, Q. Gui, D. Ba, Y. Li, D. Peng, J. Liu, Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202101537

  47. F. Chen, X.N Wang, M. Armand, M Forsyth, https://doi.org/10.21203/rs.3.rs-532893/v1

  48. A. Zalewska, I. Pruszczyk, E. Sulek, W. Wieczorek, Solid State Ionics 157, 233–239 (2003)

    Article  CAS  Google Scholar 

  49. C. Yi, W. Liu, L. Li, H. Dong, J. Liu, Funct. Mater. Lett. 12(6), 1930006 (2019)

    Article  CAS  Google Scholar 

  50. L. Feng, H. Cui, J. Power Sources 63, 145–148 (1996)

    Article  CAS  Google Scholar 

  51. M. Forsyth, J. Sun, D.R. Macfarlane, A.J. Hill, Journal of Polymer Science: Part B: Polymer. Physics 38, 341–350 (2000)

    CAS  Google Scholar 

  52. Z. Wang, W. Gao, X. Huang, Y. Mo, L. Chen, Electrochem. Solid-State Lett. 4(9), A148–A150 (2001)

    Article  CAS  Google Scholar 

  53. O. Borodin, L. Suo, M. Gobet, X. Ren, F. Wang, A. Faraone, J. Peng, M. Olguin, M. Schroeder, M.S. Ding, E. Gobrogge, A.V.W. Cresce, S. Munoz, J.A. Dura, S. Greenbaum, C. Wang, K. Xu, ACS Nano 11(10), 10462–10471 (2017)

    Article  CAS  Google Scholar 

  54. H. Wang, Z. Wang, B. Xue, Q. Meng, X. Huang, L. Chen, Chem. Commun. 2186–2187 (2004).

    Google Scholar 

  55. A. Tomaszewska, E. Zygadlo-Monikowska, Z. Florjanczyk, Solid Polymer-in-Salt Electrolytes, Abs. 531, 206th Meeting, © 2004 The Electrochemical Society, Inc

    Google Scholar 

  56. A.K. Łasinska, M. Marzantowicz, J.R. Dygas, F. Krok, Z. Florjanczyk, A. Tomaszewska, E. Zygadło Monikowska, Z. Zukowska, U. Lafont, Electrochmica Acta 169, 61–72 (2015)

    Google Scholar 

  57. M.K. Kim, Y.J. Lee, N.J. Jo, Surface Review and Letters 17(1), 63–68 (2010)

    Google Scholar 

  58. B. Wu, L. Wang, Z. Li, M. Zhao, K. Chen, S. Liu, Y. Pu, J. Li, J. Electrochem. Soc. 163(10), A2248–A2252 (2016)

    Article  CAS  Google Scholar 

  59. M. Forsyth, J. Sun, D.R. Macfarlane, A.J. Hill, Journal of Polymer Science: Part B: Polymer Physics 38, 341–350 (2000)

    Google Scholar 

  60. M.M. Doeff, L. Edman, S.E. Sloop, J. Kerr, L.C. De Jonghe, J. Power Sources 89, 227–231 (2000)

    Article  CAS  Google Scholar 

  61. A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane, J. Sun, J. Appl. Phys. 86, 2346 (1999). https://doi.org/10.1063/1.371053

    Article  CAS  Google Scholar 

  62. Y. Wu, F. Geng, R. Peter, Yu.J. Chang, X.M. Ying, Carbohydr Polym 76, 299 (2009)

    Article  CAS  Google Scholar 

  63. K. Bashir, M. Aggarwal, J Food Sci Technol 56(2), 513–523 (2019)

    Article  Google Scholar 

  64. S.A. Shahzad, S. Hussain, A.A. Mohamed, M.S. Alamri, M.A. Ibraheem, A.A.A. Qasem, Foods 8(12), 687 (2019)

    Article  CAS  Google Scholar 

  65. M.A. Villar, S.E. Barbosa, M.A. García, L.A. Castillo, O.V. López (ed.), Starch-Based Materials in Food Packaging Processing, Characterization and Applications (Academic Press, 2017)

    Google Scholar 

  66. R. Thakur, P. Pristijono, C.J. Scarlett, M. Bowyer, S.P. Singh, Q.V. Vuong, Int. J. Biol. Macromol. 132, 1079–1089 (2019)

    Article  CAS  Google Scholar 

  67. L. Moreau, W. Bindzus, S. Hill, Starch/Starke 63, 676–682 (2011)

    Article  CAS  Google Scholar 

  68. L. Moreau, W. Bindzus, S. Hill, Starch/Starke 63, 669–675 (2011)

    Article  CAS  Google Scholar 

  69. C. Bircan, S.A. Barringer, Journal of food science 63(6), 983–986 (1998)

    Google Scholar 

  70. W. Samutsri, M. Suphantharika, Carbohyd. Polym. 87, 1559–1568 (2012)

    Article  CAS  Google Scholar 

  71. D. Vieira, C. Avellaneda, A. Pawlicka, Electrochim. Acta 53, 1404 (2007)

    Article  CAS  Google Scholar 

  72. H. Mallick, A. Sarkar, J Non-Cryst Solids 352, 795 (2006)

    Article  Google Scholar 

  73. S.S. Pradhan, A. Sarkar, Mater Sci Eng, C 29, 1790 (2009)

    Article  CAS  Google Scholar 

  74. Y. Zhang, J. Zheng, Electrochim Acta 54, 749 (2008)

    Article  CAS  Google Scholar 

  75. X. Kang, J. Wang, Z. Tang, H. Wu, Y. Lin, Talanta 78, 120 (2009)

    Article  CAS  Google Scholar 

  76. S.C. Pang, C.L. Tay, S.F. Chin, Ionics 20(10), 1455–1462 (2014)

    Article  CAS  Google Scholar 

  77. V.L. Finkenstadt, Appl. Microbiol. Biotechnol. 67, 735 (2005)

    Article  CAS  Google Scholar 

  78. V.L. Finkenstadt, J.L. Willett, J. Polym. Environ. 2, 43 (2004)

    Article  Google Scholar 

  79. W. Ning, Z. Xingxiang, L. Haihui, W. Jianping, Carbohyd. Polym. 77, 607–611 (2009)

    Article  Google Scholar 

  80. P.K. Singh, B. Bhattacharya, R.K. Nagarale, K.W. Kim, H.W Rhee, Synthetic Metals, 160, 139–142 (2010)

    Google Scholar 

  81. T. Tiwari, K.P. Pandey, N. Srivastava, P.C. Srivastava, J. Appl. Polym. Sci. 121(1), 1 (2011)

    Article  CAS  Google Scholar 

  82. V.L. Finkenstadt, J.L. Willett, Adv Biopolymers, ACS Symposium Series, Chapter 17, 935, p. 256 (2006)

    Google Scholar 

  83. M.E. Gomes, A.S. Ribeiro, P.B. Malafaya, R.L. Reis, A.M. Chuha, Biomaterials 22, 883–889 (2001)

    Article  CAS  Google Scholar 

  84. T. Tiwari, M. Kumar, N. Srivastava, P.C. Srivastava, Mater. Sci. Eng., B 182, 6–13 (2014)

    Article  CAS  Google Scholar 

  85. T. Tiwari, N. Srivastava, P.C. Srivastava, Ionics 17, 353 (2011)

    Article  CAS  Google Scholar 

  86. M. Yadav, G. Nautiyal, A. Verma, M. Kumar, T. Tiwari, N. Srivastava, Ionics 25, 2693–2700 (2019)

    Article  CAS  Google Scholar 

  87. M. Yadav, M. Kumar, N. Srivastava, Electrochemica Acta 283, 1551–1559 (2018)

    Article  CAS  Google Scholar 

  88. J.K. Chauhan, D. Yadav, M. Yadav, M. Kumar, T. Tiwari, N. Srivastava, S.N. Appl, Sci. 2, 899 (2020)

    CAS  Google Scholar 

  89. B. Komal, M. Yadav, M. Kumar, T. Tiwari, N. Srivastava, e-Polymers 19, 453–461 (2019)

    Google Scholar 

  90. T. Tiwari, M. Kumar, M. Yadav, N. Srivastava, Macromolecular Symposia 388(1), 1900033 (2019)

    Google Scholar 

  91. Z. Khan, U. Ail, F.N. Ajjan, J. Phopase, Z.U. Khan, N. Kim, J. Nilsson, O. Inganäs, M. Berggren, X. Crispin, Adv. Energy Sustainability Res. 2100165 (2021)

    Google Scholar 

  92. T. Tiwari, N. Srivastava, Macromol. Symp. 388(1), 1900041 (2019)

    Article  CAS  Google Scholar 

  93. T. Tiwari, J.K. Chauhan, M. Yadav, M. Kumar, N. Srivastava, Ionics 23, 2809–2815 (2017)

    Google Scholar 

  94. M. Yadav, M. Kumar, T. Tiwari, N. Srivastava, Ionics 23, 2871–2880 (2016)

    Article  Google Scholar 

  95. T. Tiwari, M. Kumar, M. Yadav, N. Srivastava, Starch-Stärke 1800313 (2019)

    Google Scholar 

  96. J.K. Chauhan, M. Kumar, M. Yadav, T. Tiwari, N. Srivastava, Ionics 23, 2943–2949 (2017)

    Article  CAS  Google Scholar 

  97. N. Srivastava, in Supercapacitor Technology: Materials, Processes and Architectures. ed. by Inamuddin, R. Boddula, M.I. Ahamed and A.M. Asiri (Materials Research Foundations US 2019) p.121

    Google Scholar 

  98. R. Sadeghi, F. Jahani, J. Phys. Chem. B 116, 5234–5241 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to University Grant Commission (New Delhi) for supporting the project entitled “Synthesis & Electrical Characterization of Starch-based Electrolyte Systems” through project sanction no 42-814/2013 (SR) dated 22.03.2016. and to BHU-Varanasi for providing an “Incentive grant to senior faculties” under IoE Scheme (Year 2021–2022) to carryout crosslinked starch-based electrolytes work. Author is thankful to Ms. Dipti Yadav (Ph.D. scholar) for helping in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N. (2023). Flexible-High-Conducting Polymer-In-Salt-Electrolyte (PISE) Membranes: A Reality Due to Crosslinked-Starch Polymer Host. In: Kar, K.K. (eds) Handbook of Nanocomposite Supercapacitor Materials IV. Springer Series in Materials Science, vol 331. Springer, Cham. https://doi.org/10.1007/978-3-031-23701-0_10

Download citation

Publish with us

Policies and ethics