Skip to main content

Renin Angiotensin System Activity in Different Cancers: Mechanistic Insight and Preclinical Studies

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 25))

  • 259 Accesses

Abstract

The Renin Angiotensin System (RAS) is maintain arterial blood pressure as well as fluid and electrolyte balance in human body. In recent there decades, it has been emerged as an important hallmark of cancer due to its local expression in all body tissues. This chapter will shed light on the impact of RAS in various type of cancers including breast, gynaecological, gastrointestinal, lung and skin cancer. Mechanistic insights of RAS modulating cancer activity has been discussed in each cancer type individually. Additionally, effect of angiotensin receptor blockers and angiotensin converting enzyme inhibitors on various types of cancers either alone or in combination with different anticancer agents has been also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. George AJ, Thomas WG, Hannan RD (2010) The renin-angiotensin system and cancer: old dog New Tricks. Nat Rev Cancer 10(11):745–759

    Article  CAS  PubMed  Google Scholar 

  2. Ishikane S, Takahashi-Yanaga F (2018) The role of angiotensin ii in cancer metastasis: potential of renin-angiotensin system blockade as a treatment for cancer metastasis. Biochem Pharmacol 151:96–103

    Article  CAS  PubMed  Google Scholar 

  3. Passos-Silva DG, Brandan E, Santos RAS (2015) Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol Sci 36(5):310–320

    Article  CAS  PubMed  Google Scholar 

  4. Velez JC, Ryan KJ, Harbeson CE et al (2009) Angiotensin-I is largely converted to angiotensin-(1–7) and angiotensin-(2–10) by isolated rat glomeruli. Hypertension 53(5):790–797

    Article  CAS  PubMed  Google Scholar 

  5. Sanidas E, Velliou DPM, Fotsali A et al (2020) Antihypertensive drugs and risk of cancer: between scylla an charybdis. Am J Hypertens 5:1049–1058

    Article  Google Scholar 

  6. Huber MA, Azoitei N, Baumann B et al (2004) NF-kb is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114(4):569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hashemzehi M, Beheshti F, Hassanian SM et al (2020) Therapeutic potential of renin angiotensin system inhibitors in cancer cells metastasis. Pathol Res Pract 216(7):153010

    Article  CAS  PubMed  Google Scholar 

  8. Perini MV, Dmello RS, Nero TL, Chand AL (2020) Evaluating the benefits of renin angiotensin system inhibitors as cancer treatments. PharmacolTher 211:107527

    CAS  Google Scholar 

  9. Rasha F, Ramalingam L, Gollahon L et al (2019) Mechanisms linking the renin-angiotensin system, obesity, and breast cancer. Endocr Relat Cancer 26(12):R653–R672

    Article  CAS  PubMed  Google Scholar 

  10. Hoesel B, Schmid JA (2013) The Complexity of NF-kb Signaling in Inflammation and Cancer. Mol Cancer 12(1):1

    Article  Google Scholar 

  11. Oh E, Kim JY, Cho Y et al (2016) Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial- mesenchymal transition and promotes tumor growth and angiogenesis. Biochim Biophys Acta—Mol Cell Res 1863(6):1071–1081

    Article  CAS  Google Scholar 

  12. Gelosa P, Castiglioni L, Camera M, Sironi L (2020) Repurposing of drugs approved for cardiovascular diseases: opportunity or mirage? Biochem Pharmacol 177:113895

    Article  CAS  PubMed  Google Scholar 

  13. Sipahi I, Debanne SM, Rowland DY, Simon DI, J CF (2010) Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol 11(7):627–36

    Google Scholar 

  14. Xie Y, Xu P, Wang M, Zheng Y et al (2020) Antihypertensive medications are associated with the risk of kidney and bladder cancer: a systematic review and meta-analysis. Aging (Albany NY) 12(2):1545–1562

    Article  PubMed  Google Scholar 

  15. Cui Y, Wen W, Zheng T, Li H et al (2019) Use of antihypertensive medications and survival rates for breast, colorectal, lung, or stomach cancer. Am J Epidemiol 188(8):1512–1528

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M (2017) Breast cancer in young women: an overview. Updates Surg 69(3):313–317

    Article  PubMed  Google Scholar 

  17. Arrieta O, Villarreal-Garza C, Vizcaı́no G, Pineda B, Hernández-Pedro N et al (2015) Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumor Biol 36(7):5627–34

    Google Scholar 

  18. Bujak-Gizycka B, Madej J, Bystrowska B, Toton-Zuranska J et al (2019) Angiotensin 1–7 formation in breast tissue is attenuated in breast cancer-a study on the metabolism of angiotensinogen in breast cancer cell lines. J Physiol Pharmacol 70(4):503–514

    CAS  Google Scholar 

  19. Cambados N, Walther T, Nahmod K et al (2017) Angiotensin-(1–7) counteracts the transforming effects triggered by angiotensin ii in breast cancer cells. Oncotarget 8(51):88475–88487

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ekambaram P, Lee JY, Hubel NE et al (2018) The CARMA3-Bcl10-MALT1 signalosome drives Nfkb activation and promotes aggressiveness in angiotensin ii receptor-positive breast cancer. Cancer Res 78:1225–1240

    Article  CAS  PubMed  Google Scholar 

  21. Boccardo F, Rubagotti A, Nuzzo PV et al (2015) Matrix-assisted laser desorption/ionisation (MALDI) TOF analysis identifies serum angiotensin II concentrations as a strong predictor of all-cause and breast cancer (BCa)-specific mortality following breast surgery. Int J Cancer 137(10):2394–2402

    Article  CAS  PubMed  Google Scholar 

  22. Kowalska K, Nowakowska M, Domińska K, Piastowska-Ciesielska AW (2016) Coexpression of CAV-1, AT1-R and FOXM1 in prostate and breast cancer and normal cell lines and their influence on metastatic properties. Acta Biochim Pol 63(3):493–499

    Article  CAS  PubMed  Google Scholar 

  23. Bakhtiari E, Hosseini A, Boroushaki MT, Mousavi SH (2016) Angiotensin II receptor antagonist olmesartan and NF-kappaB inhibitor as cytotoxic and apoptotic agents in MCF-7 human cell line. J Chemother 28(4):314–320

    Article  CAS  PubMed  Google Scholar 

  24. Herr D, Sauer C, Holzheu I, et al (2019) Role of renin-angiotensin-system in human breast cancer cells: is there a difference in regulation of angiogenesis between hormone-receptor positive and negative breast cancer cells? Geburtshilfe Frauenheilkd 79(6):626–34

    Google Scholar 

  25. Ma Y, Xia Z, Ye C et al (2019) AGTR1 promotes lymph node metastasis in breast cancer by upregulating CXCR4/SDF-1a and inducing cell migration and invasion. Aging (Albany NY) 11(12):3969–3992

    Article  CAS  PubMed  Google Scholar 

  26. Leung HWC, Hung L-L, Chan ALF, Mou C-H (2015) Long-term use of antihypertensive agents and risk of breast cancer: a population-based case-control study. CardiolTher 4(1):65–76

    Google Scholar 

  27. Rodrigues-Ferreira S, Nahmias C (2015) G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer? Front Pharmacol 6(FEB):1–7

    Google Scholar 

  28. Namazi S, Sahebi E, Rostami-Yalmeh J et al (2015) Effect of angiotensin receptor blockade on prevention and reversion of tamoxifen-resistant phenotype in MCF-7 cells. TumorBiol 36(2):893–900

    CAS  Google Scholar 

  29. Li L, Wang F, Lv PWL et al (2015) Angiotensin II type 1 receptor gene A1166C polymorphism and breast cancer susceptibility. Genet Mol Res 14(4):15016–15023

    Article  CAS  PubMed  Google Scholar 

  30. Singh A, Srivastava N, Amit S et al (2018) Association of AGTR1 (A1166C) and ACE (I/D) polymorphisms with breast cancer risk in north indian population. Transl Oncol 11(2):233–242

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Sousa VML, Carvalho L (2018) Heterogeneity in lung cancer. Pathobiology 85(1–2):96–107

    PubMed  Google Scholar 

  32. Zuoren Y, Pestellc TG, Lisantic MP, R GP (2012) Cancer Stem Cells. Int J Biochem Cell Biol 44(12):2144–51

    Google Scholar 

  33. Yang K, Zhou J, Chen Y et al (2020) Angiotensin II contributes to intratumoral immunosuppression via induction of PD-L1 expression in non-small cell lung carcinoma. Int Immunopharmacol 84:106507

    Article  CAS  PubMed  Google Scholar 

  34. Luan Z, Liu B, Shi L (2019) Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma. Drug Dev Res 80(8):1031–1039

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S, Wang Y (2018) Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett 15(4):5859–5864

    PubMed  PubMed Central  Google Scholar 

  36. Cheng Q, Zhou L, Zhou J, Wan H, Li Q, Feng Y (2016) ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC. Oncol Rep 36(3):1403–1410

    Article  CAS  PubMed  Google Scholar 

  37. Rasheduzzaman M, Park SY (2018) Antihypertensive drug-candesartan attenuates TRAIL resistance in human lung cancer via AMPK mediated inhibition of autophagy flux. Exp Cell Res 368(1):126–135

    Article  CAS  PubMed  Google Scholar 

  38. Alhakamy NA, Ishiguro S, Uppalapati D, Berkland CJ, M T (2016) AT2R Gene delivered by condensed polylysine complexes attenuates lewis lung carcinoma after intravenous injection or intratracheal spray. Mol Cancer Ther 15(1):209–18

    Google Scholar 

  39. Ishiguro S, Alhakamy NA, Uppalapati D et al (2017) Combined local pulmonary and systemic delivery of AT2R gene by modified TAT peptide nanoparticles attenuates both murine and human lung carcinoma xenografts in mice. J Pharm Sci 106(1):385–394

    Article  CAS  PubMed  Google Scholar 

  40. Su Y, Hu Y, Wang Y et al (2017) A precision-guided MWNT mediated reawakening the sunk synergy in ras for anti-angiogenesis lung cancer therapy. Biomaterials 139:75–90

    Article  CAS  PubMed  Google Scholar 

  41. Kristensen KB, Hicks B, Azoulay L, Pottegård A (2021) Use of ACE (Angiotensin-Converting Enzyme) inhibitors and risk of lung cancer: a nationwide nested case-control study. Circ Cardiovasc Qual Outcomes 14(1):e006687

    Article  PubMed  Google Scholar 

  42. Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A (2007) The Kinin system–bradykinin: biological effects and clinical implications. Multiple role kinin system–bradykinin. Hippokratia 11(3):124–8

    Google Scholar 

  43. Linares MA, Zakaria A, Nizran P (2015) Skin Cancer. Prim Care—Clin Off Pract 42(4):645–59

    Google Scholar 

  44. Ferrari de Andrade L, Mozeleski B, Leck AR, Rossi G et al (2015) Inhalation therapy with M1 inhibits experimental melanoma development and metastases in mice. Homeopathy 105(1):109–18

    Google Scholar 

  45. Nakamura K, Yaguchi T, Ohmura G et al (2018) Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci 109(1):54–64

    Article  CAS  PubMed  Google Scholar 

  46. Olschewski DN, Hofschröer V, Nielsen N et al (2018) The angiotensin II type 1 receptor antagonist losartan affects NHE1-dependent melanoma cell behavior. Cell Physiol Biochem 45(6):2560–2576

    Article  CAS  PubMed  Google Scholar 

  47. Ishikane S, Hosoda H, Nojiri T et al (2018) Angiotensin II promotes pulmonary metastasis of melanoma through the activation of adhesion molecules in vascular endothelial cells. Biochem Pharmacol 154:136–147

    Article  CAS  PubMed  Google Scholar 

  48. Renziehausen A, Wang H, Rao B et al (2018) The renin angiotensin system (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention. Oncogene 38(13):2320–2336

    Article  PubMed  Google Scholar 

  49. Hinsley EE, de Oliveira CE, Hunt S, Coletta RD, Lambert DW (2017) Angiotensin 1–7 inhibits angiotensin ii-stimulated head and neck cancer progression. EurJ Oral Sci 125(4):247–257

    Article  CAS  Google Scholar 

  50. Drucker AM, Hollestein L, Na Y et al (2021) Association between antihypertensive medications and risk of skin cancer in people older than 65 years: a population-based study. CMAJ 193(15):E508–E516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papaggelopoulos J, Angelopoulou A, Avgoustidis D et al (2019) Association of polymorphisms in the genes of angiotensinogen and angiotensin receptors with risk for basal cell carcinoma. Anticancer Res 39(10):5525–5530

    Article  CAS  PubMed  Google Scholar 

  52. Domińska K, Ochędalski T, Kowalska K et al (2016) A common effect of angiotensin II and relaxin 2 on the PNT1A normal prostate epithelial cell line. J PhysiolBiochem 72(3):381–392

    Google Scholar 

  53. Domińska K, Ochȩdalski T, Kowalska K, et al (2016) Interaction between angiotensin II and relaxin 2 in the progress of growth and spread of prostate cancer cells. Int J Oncol 48(6):2619–28

    Google Scholar 

  54. Ito Y, Naiki-Ito A, Kato H et al (2018) Chemopreventive effects of angiotensin II receptor type 2 agonist on prostate carcinogenesis by the down-regulation of the androgen receptor. Oncotarget 9(17):13859–13869

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pai PY, Hsieh VCR, Wang CB et al (2015) Long term antihypertensive drug use and prostate cancer risk: a 9-year population-based cohort analysis. Int J Cardiol 193:1–7

    Article  PubMed  Google Scholar 

  56. Woo Y, Jung YJ (2017) Angiotensin II receptor blockers induce autophagy in prostate cancer cells. OncolLett 13(5):3579–3585

    CAS  Google Scholar 

  57. Culig Z, Santer FR (2014) Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev 33(2–3):413–427

    Article  CAS  PubMed  Google Scholar 

  58. Dominska K, Kowalska K, Matysiak ZE et al (2017) Regulation of mRNA gene expression of members of the NF-kb transcription factor gene family by angiotensin II and relaxin 2 in normal and cancer prostate cell lines. Mol Med Rep 15(6):4352–4359

    Article  CAS  PubMed  Google Scholar 

  59. Dominska K, Kowalski A, Ochedalski T, Rebas E (2017) Effects of testosterone and 17ß-estradiol on angiotensin-induced changes in tyrosine kinase activity in the androgen-independent human prostate cancer cell line, DU145. Int J Mol Med 40(5):1573–1581

    Article  CAS  PubMed  Google Scholar 

  60. Araújo WF, Naves MA, Ravanini JN, Schor N, Teixeira VPC (2015) Renin-Angiotensin System (RAS) Blockade Attenuates Growth and Metastatic Potential of Renal Cell Carcinoma in Mice. Urol Oncol Semin Orig Investig 33(9):389

    Google Scholar 

  61. Sobczuk P, Szczylik C, Porta C, Czarnecka AM (2017) Renin angiotensin system deregulation as renal cancer risk factor (review). OncolLett 14(5):5059–5068

    Google Scholar 

  62. Pei N, Mao Y, Wan P, Chen X et al (2017) Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. J Exp Clin Cancer Res 36(1):1–12

    Article  Google Scholar 

  63. Kim SJ, Nam W, You D et al (2018) Prognostic factors related to recurrence-free survival for primary carcinoma in situ of the bladder after bacillus calmette-guérin: a retrospective study. Urol Int 101(3):269–276

    Article  CAS  PubMed  Google Scholar 

  64. Karim C, Litwin MS, Bassett JC et al (2013) Recurrence of high-risk bladder cancer: a population-based analysis. Cancer 23(1):1–7

    Google Scholar 

  65. Stewart C, Ralyea C, Lockwood S (2019) Ovarian cancer: an integrated review. SeminOncolNurs 35(2):151–156

    Google Scholar 

  66. Beyazit F, Ayhan S, Celik HT, Gungor T (2015) Assessment of serum angiotensin-converting enzyme in patients with epithelial ovarian cancer. Arch Gynecol Obstet 292(2):415–420

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Q, Yu S, Lam MMT et al (2019) Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res 38(1):1–18

    Article  Google Scholar 

  68. Ping H, Guo L, Xi J, Wang D (2017) Angiotensin II type 2 receptor-interacting protein 3a inhibits ovarian carcinoma metastasis via the extracellular HMGA2-mediated ERK/EMT pathway. TumorBiol 39(6):1010428317713389

    Google Scholar 

  69. Cho MA, Jeong SY, Sohn I et al (2020) Impact of angiotensin receptor blockers, beta blockers, calcium channel blockers and thiazide diuretics on survival of ovarian cancer patients. Cancer Res Treat 52(2):645–654

    Article  PubMed  PubMed Central  Google Scholar 

  70. Matysiak ZE, Ochedalski T, Piastowska-Ciesielska AW (2015) The evaluation of involvement of angiotensin II, its receptors, and androgen receptor in endometrial cancer. GynecolEndocrinol 31(1):1–6

    CAS  Google Scholar 

  71. Nowakowska M, Matysiak-Burzyńska Z, Kowalska K et al (2016) Angiotensin II promotes endometrial cancer cell survival. Oncol Rep 36(2):1101–1110

    Article  CAS  PubMed  Google Scholar 

  72. Matysiak-Burzyńska ZE, Nowakowska M, Domińska K et al (2018) Silencing of angiotensin receptor 1 interferes with angiotensin ii oncogenic activity in endometrial cancer. J Cell Biochem 119(11):9110–9121

    Article  PubMed  Google Scholar 

  73. Pringle KG, Delforce SJ, Wang Y et al (2016) Renin-angiotensin system gene polymorphisms and endometrial cancer. Endocr Connect 5(3):128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barone M, Viggiani MT, Losurdo G, Principi M, DL A (2019) Systematic review: renin-angiotensin system inhibitors in chemoprevention of hepatocellular carcinoma. World J Gastroenterol 25(20):2524–2538

    Google Scholar 

  75. Sia D, Villanueva A, Friedman SL, Llovet JM (2017) Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152(4):745–761

    Article  CAS  PubMed  Google Scholar 

  76. . Liu D-G, Chen J, Wang H-X, Li B-X (2016) Increased expression of urotensin II is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 12(6):4961–8

    Google Scholar 

  77. Liu X, Wei GR, Li M et al (2016) The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in celastrol against angiotensin II-mediated HepG2 cell proliferation. Apoptosis 21(11):1315–1326

    Article  CAS  PubMed  Google Scholar 

  78. Qi M, Zhou Y, Liu J et al (2018) Angii induces HepG2 cells to activate epithelial-mesenchymal transition. ExpTher Med 16(4):3471–3477

    Google Scholar 

  79. Facciorusso A, Del Prete V, Crucinio N et al (2015) Angiotensin receptor blockers improve survival outcomes after radiofrequency ablation in hepatocarcinoma patients. J Gastroenterol Hepatol 30(11):1643–1650

    Article  CAS  PubMed  Google Scholar 

  80. Fan F, Tian C, Tao L et al (2016) Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. BioMed Pharmacother 83:704–711

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Li B, Wang X et al (2015) Angiotensin-(1–7) suppresses hepatocellular carcinoma growth and angiogenesis via complex interactions of angiotensin II type 1 receptor, angiotensin II type 2 receptor and mas receptor. Mol Med 21:626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oura K, Tadokoro T, Fujihara S et al (2017) Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest. Oncol Rep 38(5):2825–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Feng L-H, Sun H-C, Zhu X-D et al (2021) Irbesartan inhibits metastasis by interrupting the adherence of tumor cell to endothelial cell induced by angiotensin II in hepatocellular carcinoma. Ann Transl Med 9(3):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Melstrom LG, Salazar MD, Diamond DJ (2017) The pancreatic cancer microenvironment: a true double agent. J SurgOncol 116(1):7–15

    CAS  Google Scholar 

  85. Ilic M, Ilic I (2016) Epidemiology of pancreatic cancer. World J Gastroenterol 22(44):9694–9705

    Article  PubMed  PubMed Central  Google Scholar 

  86. Guo R, Gu J, Zhang Z, Wang Y, Gu C (2015) MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 Receptor in pancreatic cancer. IUBMB Life 67(1):42–53

    Article  CAS  PubMed  Google Scholar 

  87. Cerullo M, Gani F, Chen SY, Canner JK, Pawlik TM (2017) Impact of angiotensin receptor blocker use on overall survival among patients undergoing resection for pancreatic cancer. World J Surg 41(9):2361–2370

    Article  PubMed  Google Scholar 

  88. Arnold SA, Rivera LB, Carbon JG et al (2012) Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant Tgfb activation. PLoS ONE 7(2):e31384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li SH, Lu HI, Chang AYW et al (2016) Angiotensin II type I receptor (AT1R) is an independent prognosticator of esophageal squamous cell carcinoma and promotes cells proliferation via mTOR activation. Oncotarget 7(41):67150–67165

    Article  PubMed  PubMed Central  Google Scholar 

  90. Matsui T, Chiyo T, Kobara H et al (2019) Telmisartan inhibits cell proliferation and tumor growth of esophageal squamous cell carcinoma by inducing s-phase arrest in vitro and in vivo. Int J Mol Sci 20(13):3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bratlie SO, Wallenius V, Edebo A, Fändriks L, Casselbrant A (2019) Proteomic approach to the potential role of angiotensin II in barrett dysplasia. Proteomics—ClinAppl 13(4):1–7

    Google Scholar 

  92. Fujihara S, Morishita A, Ogawa K et al (2017) The angiotensin ii type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKa/mTOR pathway in vitro and in vivo. Oncotarget 8(5):8536–8549

    Article  PubMed  Google Scholar 

  93. Thanikachalam K, Khan G (2019) Colorectal cancer and nutrition. Nutrients 11(1):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Childers WK (2015) Interactions of the renin-angiotensin system in colorectal cancer and metastasis. Int J Colorectal Dis 30(6):749–752

    Article  PubMed  Google Scholar 

  95. Shimizu Y, Amano H, Ito Y et al (2017) Angiotensin II subtype 1a receptor signaling in resident hepatic macrophages induces liver metastasis formation. Cancer Sci 108(9):1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jones MR, Schrader KA, Shen Y et al (2016) Response to angiotensin blockade withirbesartan in a patient with metastatic colorectal cancer. Ann Oncol 27(5):801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ruderman S, Eshein A, Valuckaite V et al (2018) Early increase in blood supply (EIBS) is associated with tumorrisk in the azoxymethane model of colon cancer. BMC Cancer 18(1):1–13

    Article  Google Scholar 

Download references

Acknowledgements

The authors are also thankful to Guru Nanak Dev University (Amritsar, Punjab, India) for providing various facilities to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preet Mohinder Singh Bedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Bedi, P.S. (2023). Renin Angiotensin System Activity in Different Cancers: Mechanistic Insight and Preclinical Studies. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_18

Download citation

Publish with us

Policies and ethics