Skip to main content

Role of Renin Angiotensin-Aldosterone System in Kidney Homeostasis

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 25))

Abstract

The Renin-Angiotensin-Aldosterone System (RAAS), which regulates plasma sodium levels, arterial blood pressure, and extracellular volume, is a crucial component of the human body. Angiotensin II is a multifunctional effector peptide hormone that is created when the renin enzyme, which is produced by the kidneys, interacts with angiotensinogen. RAAS activation and the ensuing hypertension, cell proliferation, inflammation, and fibrosis affect every organ. Numerous acute and chronic illnesses can be brought on by an imbalance between renin and angiotensin II. The advancement of kidney disease is correlated with proteinuria and a decline in renal function. RAAS over-activity promotes the emergence of a variety of clinical diseases, including the development of chronic kidney disease (CKD). In order to reduce blood pressure and proteinuria in patients with chronic kidney disease (CKD), reno preventive treatment has long depended on inhibiting the renin-angiotensin-aldosterone system (RAAS). According to research, RAAS inhibitors play a preventive effect in both the early and late stages of kidney disease by preventing proteinuria, kidney fibrosis, and slow decline in renal function. An overview of the RAAS pathway, its function in the kidney, and RAAS pathway blocking techniques for enhancing long-term outcomes in CKD patients are covered in this chapter.

All the work was carried out in the Department of Research, Sir Ganga Ram Hospital, New Delhi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13:9–20

    PubMed  Google Scholar 

  2. Navar LG (2014) Physiology: hemodynamics, endothelial function, renin–angiotensin–aldosterone system, sympathetic nervous system. J Am Soc Hypertens JASH 8:519

    Article  PubMed  Google Scholar 

  3. Liu J, Zhou Y, Liu Y et al (2019) (Pro) renin receptor regulates lung development via the Wnt/β-catenin signaling pathway. Am J Physiol Lung Cell Mol Physiol 317:L202-211

    Google Scholar 

  4. Hall JE, do Carmo JM, da Silva AA et al (2019) Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 15:367–385

    Google Scholar 

  5. Drummond GR, Vinh A, Guzik TJ et al (2019) Immune mechanisms of hypertension. Nat Rev Immunol 19:517–532

    Article  CAS  PubMed  Google Scholar 

  6. Iravanian S, Dudley SC Jr (2008) The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm 5:S12–S17

    Google Scholar 

  7. Ejerblad E, Fored CM, Lindblad P et al (2006) Obesity and risk for chronic renal failure. J Am Soc Nephrol 17:1695–1702

    Article  CAS  PubMed  Google Scholar 

  8. Go AS, Chertow GM, Fan D et al (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  9. Sarnak MJ (2003) Cardiovascular complications in chronic kidney disease. Am J Kidney Dis 41:11–17

    Article  PubMed  Google Scholar 

  10. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  11. Ramos LF, Shintani A, Ikizler TA et al (2008) Oxidative stress and inflammation are associated with adiposity in moderate to severe CKD. J Am Soc Nephrol 19:593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fogo AB (2007) Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 22:2011–2022

    Article  PubMed  PubMed Central  Google Scholar 

  13. Segura J, Ruilope LM (2007) Obesity, essential hypertension and renin–angiotensin system. Public Health Nutr 10:1151–1155

    Article  PubMed  Google Scholar 

  14. Ritz E (2008) Metabolic syndrome and kidney disease. Blood Purif 26:59–62

    Article  CAS  PubMed  Google Scholar 

  15. Corvol P, Jeunemaitre X (1997) Molecular genetics of human hypertension: role of angiotensinogen. Endocr Rev 18:662–677

    CAS  PubMed  Google Scholar 

  16. Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    Article  CAS  PubMed  Google Scholar 

  17. Griendling KK, Murphy TJ, Alexander RW (1993) Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828

    Article  CAS  PubMed  Google Scholar 

  18. Hsueh WA, Baxter JD (1991) Human prorenin. Hypertension 17:469–477

    Article  CAS  PubMed  Google Scholar 

  19. Soubrier F, Wei L, Hubert C et al (1993) Molecular biology of the angiotensin I converting enzyme: II. Structure-function. Gene polymorphism and clinical implications. J Hypertens 11:599–604

    Google Scholar 

  20. Erdös EG, Skidgel RA (1997) Metabolism of bradykinin by peptidases in health and disease. In: The kinin system, vol 1, pp 111–141

    Google Scholar 

  21. Batlle D, Wysocki J, Soler MJ et al (2012) Angiotensin-converting enzyme 2: enhancing the degradation of angiotensin II as a potential therapy for diabetic nephropathy. Kidney Int 81:520–528

    Google Scholar 

  22. Wang W, Bodiga S, Das SK et al (2012) Role of ACE2 in diastolic and systolic heart failure. Heart Fail Rev 17:683–691

    Article  CAS  PubMed  Google Scholar 

  23. De Gasparo M, Catt KJ, Inagami T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    Google Scholar 

  24. Kopp UC (2011) Neural control of renal function. Morgan & Claypool Life Sciences, San Rafael (CA)

    Google Scholar 

  25. Hobart PM, Fogliano M, O’Connor BA (1984) Human renin gene: structure and sequence analysis. Proc Natl Acad Sci 81:5026–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pratt RE, Flynn JA, Hobart PM et al (1988) Different secretory pathways of renin from mouse cells transfected with the human renin gene. J Biol Chem 263:3137–3141

    Article  CAS  PubMed  Google Scholar 

  27. Drenjančević-Perić I, Jelaković B, Lombard JH et al (2011) High-salt diet and hypertension: focus on the renin-angiotensin system. Kidney Blood Press Res 34:1–1

    Article  PubMed  Google Scholar 

  28. Verdecchia P, Angeli F, Mazzotta G et al (2008) The renin angiotensin system in the development of cardiovascular disease: role of aliskiren in risk reduction. Vasc Health Risk Manag 4:971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heit C, Jackson BC, McAndrews M et al (2013) Update of the human and mouse SERPINgene superfamily. Hum Genomics 7:1–4

    Article  Google Scholar 

  30. Crisan D, Carr J (2000) Angiotensin I-converting enzyme: genotype and disease associations. J Mol Diagn 2:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernstein KE, Gonzalez-Villalobos RA, Giani JF et al (2014) Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response. Biol Chem 395:1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luther JM, Brown NJ (2011) The renin–angiotensin–aldosterone system and glucose homeostasis. Trends Pharmacol Sci 32:734–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feener EP, Northrup JM, Aiello LP et al (1995) Angiotensin II induces plasminogen activator inhibitor-1 and-2 expression in vascular endothelial and smooth muscle cells. J Clin Investig 95:1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yatabe J, Yoneda M, Yatabe MS et al (2011) Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology 152:1582–1588

    Article  CAS  PubMed  Google Scholar 

  35. Chiolero A, Maillard M, Nussberger J et al (2000) Proximal sodium reabsorption: an independent determinant of blood pressure response to salt. Hypertension 36:631–637

    Article  CAS  PubMed  Google Scholar 

  36. Ziyadeh FN, Wolf G (2000) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4:39–45

    Article  Google Scholar 

  37. Durvasula RV, Shankland SJ (2006) The renin-angiotensin system in glomerular podocytes: mediator of glomerulosclerosis and link to hypertensive nephropathy. Curr Hypertens Rep 8:132–138

    Article  CAS  PubMed  Google Scholar 

  38. Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69:2131–2147

    Article  CAS  PubMed  Google Scholar 

  39. Reiser J, Mundel P (2007) Dual effects of RAS blockade on blood pressure and podocyte function. Curr Hypertens Rep 9:403–408

    Article  CAS  PubMed  Google Scholar 

  40. Erdös EG (1990) Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension 16:363–370

    Article  PubMed  Google Scholar 

  41. Marre M (1996) Diabetic nephropathy: the ACE hypothesis. J Diabetes Complications 10:126–128

    Article  CAS  PubMed  Google Scholar 

  42. Lieberman J, Sastre A (1980) Serum angiotensin-converting enzyme: elevations in diabetes mellitus. Ann Intern Med 93:825–826

    Article  CAS  PubMed  Google Scholar 

  43. Marre M, Bernadet P, Gallois Y et al (1994) Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 43:384–388

    Article  CAS  PubMed  Google Scholar 

  44. Marre M, Jeunemaitre X, Gallois Y et al (1997) Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) Study Group. J Clin Investig 99:1585–1595

    Google Scholar 

  45. White PC, Slutsker L (1995) Haplotype analysis of CYP11B2. Endocr Res 21:437–442

    Article  CAS  PubMed  Google Scholar 

  46. Cuadra AE, Shan Z, Sumners C, Raizada MK (2010) A current view of brain renin–angiotensin system: is the (pro) renin receptor the missing link? Pharmacol Ther 125:27–38

    Google Scholar 

  47. Sahay M, Sahay R (2014) Hyponatremia: a practical approach. Indian J Endocrinol Metab 18:760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sands JM, Layton HE (2009) The physiology of urinary concentration: an update. In: Seminars in nephrology, vol 29, pp 178–195

    Google Scholar 

  49. Lim CT, Khoo B (2020) Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man. Endotext [Internet]

    Google Scholar 

  50. Yvan-Charvet L, Quignard-Boulangé A (2011) Role of adipose tissue renin–angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 79:162–168

    Google Scholar 

  51. Kalupahana NS, Massiera F, Quignard-Boulange A et al (2012) Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity 20:48–56

    Article  CAS  PubMed  Google Scholar 

  52. Berk BC, Corson MA (1997) Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circ Res 80:607–616

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen G (2006) Renin/prorenin receptors. Kidney Int 69:1503–1506

    Article  CAS  PubMed  Google Scholar 

  54. Trepiccione F, Gerber SD, Grahammer F et al (2016) Renal Atp6ap2/(Pro) renin receptor is required for normal vacuolar H+-ATPase function but not for the renin-angiotensin system. J Am Soc Nephrol 27:3320–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Daryadel A, Bourgeois S, Figueiredo MF et al (2016) Colocalization of the (Pro) renin receptor/Atp6ap2 with H+-ATPases in mouse kidney but prorenin does not acutely regulate intercalated cell H+-ATPase activity. PLoS One 11:e0147831

    Google Scholar 

  56. Kimbrough HM Jr, Vaughan ED Jr, Carey RM, Ayers CR (1977) Effect of intrarenal angiotensin II blockade on renal function in conscious dogs. Circ Res 40:174–178

    Article  CAS  PubMed  Google Scholar 

  57. Levens NR, Freedlender AE, Peach MJ, Carey RM (1983) Control of renal function by intrarenal angiotensin II. Endocrinology 112:43–49

    Article  CAS  PubMed  Google Scholar 

  58. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H (2002) Regulation of intrarenal angiotensin II in hypertension. Hypertension 39:316–322

    Article  CAS  PubMed  Google Scholar 

  59. Navar LG, Kobori H, Prieto-Carrasquero M (2003) Intrarenal angiotensin II and hypertension. Curr Hypertens Rep 5:135–143

    Google Scholar 

  60. Wang CT, Chin SY, Navar LG (2000) Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats. Am J Physiol Ren Physiol 279:F319–F325

    Article  CAS  Google Scholar 

  61. Frohlich ED (1997) Influence of nitric oxide and angiotensin II on renal involvement in hypertension. Hypertension 29:188–193

    Article  CAS  PubMed  Google Scholar 

  62. Mitchell KD (1995) Intrarenal actions of angiotensin II in the pathogenesis of experimental hypertension. In: Hypertension: pathophysiology, diagnosis and management, pp 1437–1450

    Google Scholar 

  63. Ploth DW (1983) Angiotensin-dependent renal mechanisms in two-kidney, one-clip renal vascular hypertension. Am J Physiol Ren Physiol 245:F131–F141

    Article  CAS  Google Scholar 

  64. Inada Y, Wada T, Ojima M et al (1997) Protective effects of candesartan cilexetil (TCV-116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 19:1079–1099

    Article  CAS  PubMed  Google Scholar 

  65. Wolf G, Butzmann U, Wenzel UO (2003) The renin-angiotensin system and progression of renal disease: from hemodynamics to cell biology. Nephron Physiol 93:3–13

    Article  Google Scholar 

  66. Wolf G, Wenzel U, Burns KD et al (2002) Angiotensin II activates nuclear transcription factor-κB through AT1 and AT2 receptors. Kidney Int 61:1986–1995

    Article  CAS  PubMed  Google Scholar 

  67. Huang Y, Wongamorntham S, Kasting J et al (2006) Renin increases mesangial cell transforming growth factor-β1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113

    Article  CAS  PubMed  Google Scholar 

  68. Prasad GR, Ruzicka M, Burns KD et al (2009) Hypertension in dialysis and kidney transplant patients. Can J Cardiol 25:309–314

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tedla FM, Brar A, Browne R, Brown C (2019) Hypertension in chronic kidney disease: navigating the evidence. Int J Hypertens 2011

    Google Scholar 

  70. Siragy HM, Carey RM (1999) Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33:1237–1242

    Article  CAS  PubMed  Google Scholar 

  71. Nishiyama A, Seth DM, Navar LG (2002) Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension 39:129–134

    Article  CAS  PubMed  Google Scholar 

  72. Ueki N, Takeda S, Koya D, Kanasaki K (2015) The relevance of the renin-angiotensin system in the development of drugs to combat preeclampsia. Int J Endocrinol 572713:2015

    Google Scholar 

  73. Tak SI, Wani ML, Khan KA et al (2011) Reninoma presenting as cardiac syncope. Ann Pediatr Cardiol 4:71–77

    Article  PubMed  PubMed Central  Google Scholar 

  74. Trnka P, Orellana L, Walsh M et al (2014) Reninoma: an uncommon cause of renin-mediated hypertension. Front Pediatr 2:89

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mao C, Liu R, Le Bo NC et al (2013) High-salt diets during pregnancy affected fetal and offspring renal renin–angiotensin system. J Endocrinol 218:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cagnoni F, Njwe CA, Zaninelli A et al (2010) Blocking the RAAS at different levels: an update on the use of the direct renin inhibitors alone and in combination. Vasc Health Risk Manag 6:549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ryan MJ, Tuttle KR (2008) Elevations in serum creatinine with RAAS blockade: why isn’t it a sign of kidney injury? Curr Opin Nephrol Hypertens 17:443–449

    Article  CAS  PubMed  Google Scholar 

  78. Yamout H, Lazich I, Bakris GL (2014) Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease. Adv Chronic Kidney Dis 21:281–286

    Article  PubMed  Google Scholar 

  79. Heerspink HJ, De Borst MH, Bakker SJ, Navis GJ (2013) Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nat Rev Nephrol 9:112–121

    Article  CAS  Google Scholar 

  80. Zhang F, Liu H, Liu D et al (2017) Effects of RAAS inhibitors in patients with kidney disease. Curr Hypertens Rep 19:1–7

    Article  Google Scholar 

  81. Bakris GL (2010) Dual RAAS blockade is desirable in kidney disease: con. Kidney Int 78:546–549

    Article  CAS  PubMed  Google Scholar 

  82. Ma TK, Kam KK, Yan BP, Lam YY (2010) Renin–angiotensin–aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 160:1273–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robles NR, Cerezo I, Hernandez-Gallego R (2014) Renin–angiotensin system blocking drugs. J Cardiovasc Pharmacol Ther 19:14–33

    Google Scholar 

  84. Persson F, Rossing P (2014) Sequential RAAS blockade: is it worth the risk? Adv Chronic Kidney Dis 21:159–165

    Article  PubMed  Google Scholar 

  85. Burnier M (2020) Renin-angiotensin system blockade in advanced kidney disease: stop or continue? Kidney Med 2:231–234

    Article  PubMed  PubMed Central  Google Scholar 

  86. Freeman AJ, Vinh A, Widdop RE (2017) Novel approaches for treating hypertension. F1000Research 6

    Google Scholar 

  87. Ecder T (2009) Renin inhibition and the kidney. Turk Kardiyol Dern Ars 37:28–31

    PubMed  Google Scholar 

  88. Dalla VM, Simioni N, Masiero A (2009) Aliskiren: a new inhibitor of renin-angiotensin aldosterone system activity. Minerva Endocrinol 34:333–338

    Google Scholar 

  89. Epstein BJ, Smith SM, Choksi R (2009) Recent changes in the landscape of combination RAS blockade. Expert Rev Cardiovasc Ther 7:1373–1384

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kant, R., Gupta, S., Kumra, T., Rana, R., Ganguly, N.K. (2023). Role of Renin Angiotensin-Aldosterone System in Kidney Homeostasis. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_13

Download citation

Publish with us

Policies and ethics