Skip to main content

Role of Renin-Angiotensin System in the Pathogenesis and Progression of Non-alcoholic Fatty Liver

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 25))

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases and is increasing simultaneously with obesity and Type 2 Diabetes Mellitus, which are on the rise. Currently, no FDA-approved drug exists to treat NAFLD, and pharmacological treatments are directed at managing its associated comorbidities. Therefore, a better understanding of NAFLD pathogenesis and converging pathways helps in improving prognosis and preventing progression to non-alcoholic steatohepatitis (NASH). Renin-angiotensin system (RAS) plays an important role not only in regulating blood pressure but was also found to contribute to obesity, insulin resistance, lipotoxicity, and inflammation, which are considered the key players in NAFLD pathogenesis. Moreover, a prominent role of RAS has been identified in hepatic fibrosis; activated hepatic stellate cells (HSC) express renin, angiotensin-converting enzyme (ACE), and angiotensin II (AngII), which cause HSC to proliferate and produce reactive oxygen species and inflammatory mediators. On the other hand, the inhibition of RAS improved insulin resistance and inhibited hepatic fibrogenesis. The maintenance of the balance between the two arms of RAS showed to play a meaningful role. One of the two arms is known as the classical arm; ACE-AngII-Angiotensin I receptor arm, and the other is the new one; ACE2/Ang1-7/Mas/MasII. Ang1-7 was found to increase insulin sensitivity and counteract the effects of AngII. Therefore, RAS blockers have emerged as a promising therapeutic modality for NAFLD. Accordingly, the present review will discuss the role of RAS in NAFLD and the potential therapeutic value of RAS modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parthasarathy G, Revelo X, Malhi H (2020) Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun 4(4):478–492. https://doi.org/10.1002/hep4.1479

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fountain JH, Lappin SL (2022) Physiology, renin angiotensin system. StatPearls Publishing. Accessed: 26 Jan 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK470410/

  3. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm (JMCP) 13(8 Suppl B):9–20. https://doi.org/10.18553/jmcp.2007.13.s8-b.9

  4. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K (2014) The renin-angiotensin-aldosterone system in vascular inflammation and remodelling. Int J Inflamm 2014:e689360. https://doi.org/10.1155/2014/689360

  5. Wang JM et al (2002) Presence of cellular renin-angiotensin system in chromaffin cells of bovine adrenal medulla. Am J Physiol-Heart Circ Physiol 283(5):H1811–H1818

    Google Scholar 

  6. Engeli S, Negrel R, Sharma AM (2000) Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35(6):1270–1277. https://doi.org/10.1161/01.HYP.35.6.1270

    Article  CAS  PubMed  Google Scholar 

  7. Hunt MK et al (1992) Colocalization and release of angiotensin and renin in renal cortical cells. Am J Physiol-Ren Physiol 263(3):F363–F373

    Article  CAS  Google Scholar 

  8. Paschos P, Tziomalos K (2012) Nonalcoholic fatty liver disease and the renin-angiotensin system: implications for treatment. World J Hepatol 4(12):327–331. https://doi.org/10.4254/wjh.v4.i12.327

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803. https://doi.org/10.1152/physrev.00036.2005

  10. The physiology of a local renin-angiotensin system in the pancreas. https://pubmed.ncbi.nlm.nih.gov/17218353/. Accessed 8 Feb 2022

  11. De Mello WC (2014) Beyond the circulating renin-angiotensin aldosterone system. Front Endocrinol 5. Accessed: 8 Feb 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fendo.2014.00104

  12. Kreutz R et al (2020) Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res 116(10):1688–1699. https://doi.org/10.1093/cvr/cvaa097

  13. Haber E (1979) The role of renin in the control of the circulation and in hypertensive disease. Ric Clin Lab 9(4). https://doi.org/10.1007/BF02904575

  14. Wu C, Lu H, Cassis LA, Daugherty A (2011) Molecular and pathophysiological features of angiotensinogen: a mini review. North Am J Med Sci 4(4):183–190. https://doi.org/10.7156/v4i4p183

    Article  Google Scholar 

  15. Feher J (2012) 7.6—Regulation of fluid and electrolyte balance. In: Feher J (ed) Quantitative human Physiology. Academic Press, Boston, pp 665–673. https://doi.org/10.1016/B978-0-12-382163-8.00074-8

  16. Wong MK-S (2021) Subchapter 42D—Angiotensin converting enzyme. In: Ando H, Ukena K, Nagata S (eds) Handbook of hormonesm, 2nd edn. Academic Press, San Diego, pp 505–508. https://doi.org/10.1016/B978-0-12-820649-2.00128-5

  17. Vickers C et al (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843. https://doi.org/10.1074/jbc.M200581200

    Article  CAS  PubMed  Google Scholar 

  18. Ghadhanfar E, Alsalem A, Al-Kandari S, Naser J, Babiker F, Al-Bader M (2017) The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reprod Biol Endocrinol (RBE) 15:97. https://doi.org/10.1186/s12958-017-0316-8

    Article  CAS  Google Scholar 

  19. International union of pharmacology. XXIII. The angiotensin II receptors. https://pubmed.ncbi.nlm.nih.gov/10977869/. Accessed 8 Feb 2022

  20. Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33(2):363–382. https://doi.org/10.1111/jvim.15454

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fyhrquist F, Saijonmaa O (2008) Renin-angiotensin system revisited. J Intern Med 264(3):224–236. https://doi.org/10.1111/j.1365-2796.2008.01981.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sequeira Lopez MLS, Gomez RA (2011) 126—Development of the renin-angiotensin system. In: Polin RA, Fox WW, Abman SH (eds) Fetal and neonatal physiology, 4th edn. W.B. Saunders, Philadelphia, pp 1330–1339. https://doi.org/10.1016/B978-1-4160-3479-7.10126-0

  23. De Bundel D, Smolders I, Vanderheyden P, Michotte Y (2008) Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 14(4):315–339. https://doi.org/10.1111/j.1755-5949.2008.00057.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frontiers | From angiotensin IV to small peptidemimetics inhibiting insulin-regulated aminopeptidase | pharmacology. https://www.frontiersin.org/articles/10.3389/fphar.2020.590855/full. Accessed 9 Feb 2022

  25. Shenoy V, Ferreira AJ, Katovich M, Raizada MK (2015) Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis. Prot Arm Renin Angiotensin Syst (RAS), 269–274. https://doi.org/10.1016/B978-0-12-801364-9.00038-9

  26. Warner FJ, Lubel JS, McCaughan GW, Angus PW (2007) Liver fibrosis: a balance of ACEs? Clin Sci Lond Engl 1979 113(3):109–118. https://doi.org/10.1042/CS20070026

  27. Yang M, Ma X, Xuan X, Deng H, Chen Q, Yuan L (2022) Liraglutide attenuates non-alcoholic fatty liver disease in mice by regulating the local renin-angiotensin system. Front Pharmacol 11. Accessed: 8 Feb 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fphar.2020.00432

  28. Bader M (2013) ACE2, angiotensin-(1-7), and Mas: the other side of the coin. Pflugers Arch 465(1):79–85. https://doi.org/10.1007/s00424-012-1120-0

    Article  CAS  PubMed  Google Scholar 

  29. Passaglia P et al (2021) Central administration of angiotensin-(1-7) improves vasopressin impairment and hypotensive response in experimental endotoxemia. Cells 10(1):105. https://doi.org/10.3390/cells10010105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z et al (2021) Characteristics of Ang-(1-7)/Mas-mediated amelioration of joint inflammation and cardiac complications in mice with collagen-induced arthritis. Front Immunol 12:655614. https://doi.org/10.3389/fimmu.2021.655614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altered gut microbiome profile in patients with pulmonary arterial hypertension | hypertension. https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.119.14294. Accessed 28 Feb 2022

  32. Alves-Bezerra M, Cohen DE (2017) Triglyceride metabolism in the liver. Compr Physiol 8(1):1–8. https://doi.org/10.1002/cphy.c170012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu J, Marsh S, Hu J, Feng W, Wu C (2016) The Pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract 2016:2862173. https://doi.org/10.1155/2016/2862173

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang Y-L, Chen H, Wang C-L, Liang L (2018) Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model.” World J Gastroenterol 24(27):2974–2983. https://doi.org/10.3748/wjg.v24.i27.2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung U, Choi M-S (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. https://doi.org/10.3390/ijms15046184

  36. Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A (2013) Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5(5):1544–1560. https://doi.org/10.3390/nu5051544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Wang H (2020) Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci 10:140. https://doi.org/10.1186/s13578-020-00507-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duseja A et al (2015) Non-alcoholic fatty liver disease and metabolic syndrome-position paper of the Indian National Association for the Study of the Liver, Endocrine Society of India, Indian College of Cardiology and Indian Society of Gastroenterology. J Clin Exp Hepatol 5(1):51–68. https://doi.org/10.1016/j.jceh.2015.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  39. Takahashi Y, Sugimoto K, Inui H, Fukusato T (2015) Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 21(13):3777–3785. https://doi.org/10.3748/wjg.v21.i13.3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  41. Jasirwan COM, Lesmana CRA, Hasan I, Sulaiman AS, Gani RA (2019) The role of gut microbiota in non-alcoholic fatty liver disease: pathways of mechanisms. Biosci Microbiota Food Health 38(3):81–88. https://doi.org/10.12938/bmfh.18-032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wree A et al (2014) NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med Berl Ger 92(10):1069–1082. https://doi.org/10.1007/s00109-014-1170-1

    Article  CAS  Google Scholar 

  43. Adolph TE, Grander C, Grabherr F, Tilg H (2017) Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci 18(8):E1649. https://doi.org/10.3390/ijms18081649

    Article  CAS  Google Scholar 

  44. Gamberi T, Magherini F, Modesti A, Fiaschi T (2018) Adiponectin signaling pathways in liver diseases. Biomedicines 6(2):52. https://doi.org/10.3390/biomedicines6020052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B (2018) Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 69(4):927–947. https://doi.org/10.1016/j.jhep.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  46. Han J, Kaufman RJ (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57(8):1329–1338. https://doi.org/10.1194/jlr.R067595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raciti GA et al (2010) Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells. Diabetologia 53(5):955–965. https://doi.org/10.1007/s00125-010-1676-1

    Article  CAS  PubMed  Google Scholar 

  48. Lee J-S, Zheng Z, Mendez R, Ha S-W, Xie Y, Zhang K (2012) Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol Lett 211(1):29–38. https://doi.org/10.1016/j.toxlet.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Su J et al (2013) Endoplasmic reticulum is at the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in the pathogenesis of diabetes mellitus. J Diabetes Res 2013:193461. https://doi.org/10.1155/2013/193461

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917. https://doi.org/10.1016/j.cell.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Musso G et al (2019) Angiotensin II Type 1 receptor rs5186 Gene variant predicts incident NAFLD and associated hypertension: role of dietary fat-induced pro-inflammatory cell activation. Am J Gastroenterol 114(4):607–619. https://doi.org/10.14309/ajg.0000000000000154

    Article  PubMed  Google Scholar 

  52. Sansoè G, Aragno M, Wong F (2020) Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int 40(1):18–31. https://doi.org/10.1111/liv.14272

    Article  CAS  PubMed  Google Scholar 

  53. Marcuccilli M, Chonchol M (2016) NAFLD and chronic kidney disease. Int J Mol Sci 17(4):562. https://doi.org/10.3390/ijms17040562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei Y et al (2008) Angiotensin II-induced non-alcoholic fatty liver disease is mediated by oxidative stress in transgenic TG(mRen2)27(Ren2) rats⋆. J Hepatol 49(3):417–428. https://doi.org/10.1016/j.jhep.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borém LMA, Neto JFR, Brandi IV, Lelis DF, Santos SHS (2018) The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: a brief review. Hypertens Res Off J Jpn Soc Hypertens 41(6):394–405. https://doi.org/10.1038/s41440-018-0040-6

    Article  CAS  Google Scholar 

  56. Frantz EDC et al (2017) Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats. Exp Physiol 102(9):1208–1220. https://doi.org/10.1113/EP085924

    Article  CAS  PubMed  Google Scholar 

  57. de Macêdo SM, Antunes Guimarães T, Feltenberger JD, Santos SHS (2014) The role of renin-angiotensin system modulation on treatment and prevention of liver diseases. Peptides 62:189–196. https://doi.org/10.1016/j.peptides.2014.10.005

  58. Montez P et al (2012) Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats. Endocrinology 153(12):5746–5759. https://doi.org/10.1210/en.2012-1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jayasooriya AP et al (2008) Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc Natl Acad Sci U S A 105(18):6531–6536. https://doi.org/10.1073/pnas.0802690105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Muñoz MC et al (2012) The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7). Regul Pept 177(1–3):1–11. https://doi.org/10.1016/j.regpep.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  61. Cao X et al (2016) Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis. Sci Rep 6:21592. https://doi.org/10.1038/srep21592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lubel JS, Herath CB, Burrell LM, Angus PW (2008) Liver disease and the renin-angiotensin system: recent discoveries and clinical implications. J Gastroenterol Hepatol 23(9):1327–1338. https://doi.org/10.1111/j.1440-1746.2008.05461.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim KM, Roh J-H, Lee S, Yoon J-H (2021) Clinical implications of renin-angiotensin system inhibitors for development and progression of non-alcoholic fatty liver disease. Sci Rep 11(1), Art. no. 1. https://doi.org/10.1038/s41598-021-81959-1

  64. Feltenberger JD et al (2013) Oral formulation of angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertens Dallas Tex 1979 62(2):324–330. https://doi.org/10.1161/HYPERTENSIONAHA.111.00919

  65. Li Y et al (2018) Clinical application of angiotensin receptor blockers in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Oncotarget 9(35):24155–24167. https://doi.org/10.18632/oncotarget.23816

    Article  PubMed  PubMed Central  Google Scholar 

  66. Alqarni I, Bassiouni YA, Badr AM, Ali RA (2019) Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmacol 164:252–262. https://doi.org/10.1016/j.bcp.2019.04.018

    Article  CAS  PubMed  Google Scholar 

  67. Zhou M-S, Schulman IH, Zeng Q (2012) Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med 17(5):330–341. https://doi.org/10.1177/1358863X12450094

    Article  Google Scholar 

  68. Liu Z (2007) The renin-angiotensin system and insulin resistance. Curr Diab Rep 7(1):34–42. https://doi.org/10.1007/s11892-007-0007-5

    Article  PubMed  Google Scholar 

  69. Wei Y et al (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281(46):35137–35146. https://doi.org/10.1074/jbc.M601320200

    Article  CAS  PubMed  Google Scholar 

  70. Luther JM, Brown NJ (2011) The renin-angiotensin-aldosterone system and glucose homeostasis. Trends Pharmacol Sci 32(12):734–739. https://doi.org/10.1016/j.tips.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharma AM, Janke J, Gorzelniak K, Engeli S, Luft FC (2002) Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertens Dallas Tex 1979 40(5):609–611. https://doi.org/10.1161/01.hyp.0000036448.44066.53

  72. Lenz O, Fornoni A (2008) Renin-angiotensin system blockade and diabetes: moving the adipose organ from the periphery to the center. Kidney Int 74(7):851–853. https://doi.org/10.1038/ki.2008.391

    Article  CAS  PubMed  Google Scholar 

  73. de Kloet AD, Krause EG, Woods SC (2010) The renin angiotensin system and the metabolic syndrome. Physiol Behav 100(5):525–534. https://doi.org/10.1016/j.physbeh.2010.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Santos SHS et al (2010) Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7). Arterioscler Thromb Vasc Biol 30(5):953–961. https://doi.org/10.1161/ATVBAHA.109.200493

    Article  CAS  PubMed  Google Scholar 

  75. Song L-N et al (2020) Angiotensin-(1-7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB J Off Publ Fed Am Soc Exp Biol 34(12):16291–16306. https://doi.org/10.1096/fj.202001639R

    Article  CAS  Google Scholar 

  76. Husain K, Hernandez W, Ansari RA, Ferder L (2015) Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 6(3):209–217. https://doi.org/10.4331/wjbc.v6.i3.209

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu Y-Z et al (2013) An increased circulating angiotensin II concentration is associated with hypoadiponectinemia and postprandial hyperglycemia in men with nonalcoholic fatty liver disease. Internal Med 52(8):855–861. https://doi.org/10.2169/internalmedicine.52.8839

    Article  CAS  Google Scholar 

  79. Moreno M et al (2010) Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology 51(3):942–952. https://doi.org/10.1002/hep.23419

    Article  CAS  PubMed  Google Scholar 

  80. Cao X et al (2019) Angiotensin-converting enzyme 2 inhibits endoplasmic reticulum stress-associated pathway to preserve nonalcoholic fatty liver disease. Diabetes Metab Res Rev 35(4):e3123. https://doi.org/10.1002/dmrr.3123

    Article  CAS  PubMed  Google Scholar 

  81. Cao X, Yang F-Y, Xin Z, Xie R-R, Yang J-K (2014) The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance. Mol Cell Endocrinol 393(1–2):30–38. https://doi.org/10.1016/j.mce.2014.05.024

    Article  CAS  PubMed  Google Scholar 

  82. Blaustein M et al (2013) Modulation of the Akt pathway reveals a novel link with PERK/eIF2α, which is relevant during hypoxia. PLoS ONE 8(7):e69668. https://doi.org/10.1371/journal.pone.0069668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Song Q et al (2016) PI3K-Akt-mTOR signal inhibition affects expression of genes related to endoplasmic reticulum stress. Genet Mol Res (GMR) 15(3). https://doi.org/10.4238/gmr.15037868

  84. Lin M-L et al (2014) Suppression of PI3K/Akt signaling by synthetic bichalcone analog TSWU-CD4 induces ER stress- and Bax/Bak-mediated apoptosis of cancer cells. Apoptosis Int J Program Cell Death 19(11):1637–1653. https://doi.org/10.1007/s10495-014-1031-y

    Article  CAS  Google Scholar 

  85. Yokohama S et al (2004) Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40(5):1222–1225. https://doi.org/10.1002/hep.20420

    Article  CAS  Google Scholar 

  86. Torres DM, Jones FJ, Shaw JC, Williams CD, Ward JA, Harrison SA (2011) Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: a 12-month randomized, prospective, open-label trial. Hepatology 54(5):1631–1639. https://doi.org/10.1002/hep.24558

    Article  CAS  PubMed  Google Scholar 

  87. McPherson S et al (2017) A randomised controlled trial of losartan as an anti-fibrotic agent in non-alcoholic steatohepatitis. PLoS ONE 12(4):e0175717. https://doi.org/10.1371/journal.pone.0175717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alam S et al (2020) Effect of telmisartan and vitamin E on liver histopathology with non-alcoholic steatohepatitis: a randomized, open-label, noninferiority trial. JGH Open Open Access J Gastroenterol Hepatol 4(4):663–669. https://doi.org/10.1002/jgh3.12315

    Article  Google Scholar 

  89. Klyarytskaya IL, Stilidi EI, Maksymova EV (2015) Comparison of different treatment regimens in patients with nonalcoholic fatty liver disease. Eksp Klin Gastroenterol Exp Clin Gastroenterol 7:12–17

    Google Scholar 

  90. Zhang X et al (2021) Angiotensin-converting enzyme inhibitors prevent liver-related events in nonalcoholic fatty liver disease. Hepatology. https://doi.org/10.1002/hep.32294

  91. Milic S et al (2015) Nonalcoholic steatohepatitis: emerging targeted therapies to optimize treatment options. Drug Des Devel Ther 9:4835–4845. https://doi.org/10.2147/DDDT.S64877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kato J et al (2012) Therapeutic effects of angiotensin II type 1 receptor blocker, irbesartan, on non-alcoholic steatohepatitis using FLS-ob/ob male mice. Int J Mol Med 30(1):107–113. https://doi.org/10.3892/ijmm.2012.958

    Article  CAS  PubMed  Google Scholar 

  93. Ran J, Hirano T, Adachi M (2004) Angiotensin II type 1 receptor blocker ameliorates overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. Am J Physiol Endocrinol Metab 287(2):E227–E232. https://doi.org/10.1152/ajpendo.00090.2004

    Article  CAS  PubMed  Google Scholar 

  94. Prasad A, Quyyumi AA (2004) Renin-angiotensin system and angiotensin receptor blockers in the metabolic syndrome. Circulation 110(11):1507–1512. https://doi.org/10.1161/01.CIR.0000141736.76561.78

    Article  PubMed  Google Scholar 

  95. Fujinaga Y et al (2020) Effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis. Int J Mol Sci 21(15):E5589. https://doi.org/10.3390/ijms21155589

    Article  CAS  Google Scholar 

  96. Kobayashi N et al (2008) Cardioprotective mechanism of telmisartan via PPAR-gamma-eNOS pathway in dahl salt-sensitive hypertensive rats. Am J Hypertens 21(5):576–581. https://doi.org/10.1038/ajh.2008.27

    Article  CAS  PubMed  Google Scholar 

  97. Tokushige K et al (2021) Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J Gastroenterol 56(11):951–963. https://doi.org/10.1007/s00535-021-01796-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira M. Badr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badr, A.M., Sherif, I.O., Mahran, Y.F., Attia, H.A. (2023). Role of Renin-Angiotensin System in the Pathogenesis and Progression of Non-alcoholic Fatty Liver. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_10

Download citation

Publish with us

Policies and ethics