Skip to main content

Implications of Renin-Angiotensin System in Health and Disease

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 25))

  • 276 Accesses

Abstract

The renin-angiotensin system (RAS) is one of major neuro-endocrine entity which is intimately involved in regulating the cellular functions and metabolic activities in the body. The activation of RAS results in the formation and release of angiotensin II mainly as well as angiotensin 1–7 through the participation of angiotensin converting enzyme (ACE) and its homolog ACE2, respectively. Angiotensin II upon activating the angiotensin type 1 receptors (AT1R) is known to produce a wide variety of effects namely vasoconstriction, fluid retention, fibrosis and thrombosis in addition to promoting oxidative stress, inflammation and hypertrophic process. On the other hand, angiotensin II by activating the angiotensin type 2 receptors (AT2R) produces effects which are antagonists to those due to AT1R activation. Furthermore, angiotensin 1–7 has been shown to activate Mas receptors and exert actions which are similar to those for AT2R activation but antagonists to those for AT1R activation. The effects of AT1R activation during initial stages of pathological stimulus are considered to be of adaptive nature for maintaining homeostasis in all organs but over a prolonged period it is known to produce adverse effects which are associated with the development of diverse diseases. Although the activation of both AT2R and Mas receptor is antagonistic to AT1R activation, the exact role of these receptor systems at different stages of disease progression and organ dysfunction remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raizada MK, Phillips MI, Sumners C (1993) Cellular and molecular biology of the renin-angiotensin system. CRC Press, Boca Raton, Fla, pp 379–411

    Google Scholar 

  2. Matsubara H (1998) Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191

    Article  CAS  PubMed  Google Scholar 

  3. Bader M (2010) Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 50:439–465

    Article  CAS  PubMed  Google Scholar 

  4. Santos RA, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M (2019) The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Circ Physiol 316:H958–H970

    Article  Google Scholar 

  5. Ferrario CM (1990) The renin-angiotensin system: Importance in physiology and pathology. J Cardiovasc Pharmacol 15:S1-5

    Article  PubMed  Google Scholar 

  6. Wagman G, Fudim M, Kosmas CE, Panni RE, Vittorio TJ (2012) The neurohormonal network in the RAAS can bend be- fore breaking. Curr Heart Fail Rep 9:81–91

    Article  CAS  PubMed  Google Scholar 

  7. Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803

    Article  CAS  PubMed  Google Scholar 

  8. Crowley SD, Coffman TM (2012) Recent advances involving the renin–angiotensin system. Exp Cell Res 318:1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpaintner K, Ganten D (1988) Endogenous tissue renin-angiotensin systems: from molecular biology to therapy. Am J Med 84:28–36

    Article  CAS  PubMed  Google Scholar 

  10. Simoes Silva AC, Silveira KD, Ferreira AJ, Teixeira MM (2013) ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 169:477–492

    Article  CAS  Google Scholar 

  11. Santos RA, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M et al (2018) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 98:505–553

    Article  CAS  PubMed  Google Scholar 

  12. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V et al (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 98:1627–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lubel JS, Herath CB, Burrell LM, Angus PW (2008) Liver disease and the renin-angiotensin system: recent discoveries and clinical implications. J Gastroenterology Hepatol. 23(9):1327–1338

    Article  CAS  Google Scholar 

  14. Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1–7) heptapeptide. Proc Natl Acad Sci U S A 85(11):4095–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87(5):E1-9

    Article  CAS  PubMed  Google Scholar 

  16. Santos RA, Simoes e Silva AC, Maric C et al (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100(14):8258–8263

    Google Scholar 

  17. Ardaillou R (1997) Active fragments of angiotensin II: enzymatic pathways of synthesis and biological effects. Curr Opin Nephrol Hypertens 6(1):28–34

    Article  CAS  PubMed  Google Scholar 

  18. Bataller R, Sancho-Bru P, Gines P et al (2003) Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 125(1):117–125

    Article  CAS  PubMed  Google Scholar 

  19. Leung PS, Chappell MC (2003) A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 35(6):838–846

    Article  CAS  PubMed  Google Scholar 

  20. Leung PS, Local RAS (2010) Adv Exp Med Biol 690:69–87

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leung PS (2004) The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein Pept Sci 5(4):267–273

    Article  CAS  PubMed  Google Scholar 

  22. Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology 144(6):2179–2183

    Article  CAS  PubMed  Google Scholar 

  23. Bhullar SK, Shah AK, Dhalla NS (2022) Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. Scr Med 53(1):51–76

    Google Scholar 

  24. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112:417–428

    Article  CAS  Google Scholar 

  25. Sasaki K, Yamano Y, Bardhan S et al (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351(6323):230–233

    Article  CAS  PubMed  Google Scholar 

  26. Herath CB, Warner FJ, Lubel JS et al (2007) Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. J Hepatol 47(3):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paizis G, Tikellis C, Cooper ME et al (2005) Chronic liver injury in rats and humans up regulates the novel enzyme angiotensin converting enzyme 2. Gut 54(12):1790–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tom B, Dendorfer A, Danser AH (2003) Bradykinin, angiotensin-(1–7), and ACE inhibitors: how do they interact? Int J Biochem Cell Biol 35(6):792–801

    Article  CAS  PubMed  Google Scholar 

  29. Gioli-Pereira L, Nascimento EA, Santos EL et al (2005) Fate of bradykinin on the rat liver when administered by the venous or arterial route. J Gastroenterol Hepatol 20(3):463–473

    Article  CAS  PubMed  Google Scholar 

  30. Gorelik G, Carbini LA, Scicli AG (1998) Angiotensin 1–7 induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Ther 286(1):403–410

    CAS  PubMed  Google Scholar 

  31. Li P, Chappell MC, Ferrario CM, Brosnihan KB (1997) Angiotensin-(1–7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29(1 Pt 2):394–400

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira AJ, Santos RA, Almeida AP (2002) Angiotensin-(1–7) improves the post-ischemic function in isolated perfused rat hearts. Braz J Med Biol Res 35(9):1083–1090

    Article  CAS  PubMed  Google Scholar 

  33. Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA (1996) Angiotensin-(1–7) inhibits vascular smooth muscle cell growth. Hypertension 28(1):104–108

    Article  CAS  PubMed  Google Scholar 

  34. Tallant EA, Ferrario CM, Gallagher PE (2005) Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 289(4):H1560-1566

    Article  CAS  PubMed  Google Scholar 

  35. Iwata M, Cowling RT, Gurantz D et al (2005) Angiotensin-(1–7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289(6):H2356-2363

    Article  CAS  PubMed  Google Scholar 

  36. Kucharewicz I, Chabielska E, Pawlak D, Matys T, Rolkowski R, Buczko W (2000) The antithrombotic effect of angiotensin-(1–7) closely resembles that of losartan. J Renin Angiotensin Aldosterone Syst 1(3):268–272

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Meng Y, Yang XS, Mi LF, Cai SX (2005) ACEI attenuates the progression of CCl4-induced rat hepatic fibrogenesis by inhibiting TGF-beta1, PDGF-BB, NF-kappaB and MMP-2,9. World J Gastroenterol 11(31):4807–4811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurikawa N, Suga M, Kuroda S, Yamada K, Ishikawa H (2003) An angiotensin II type 1 receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis by suppression of proliferation and collagen synthesis in activated hepatic stellate cells. Br J Pharmacol 139(6):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tuncer I, Ozbek H, Ugras S, Bayram I (2003) Anti-fibrogenic effects of captopril and candesartan cilexetil on the hepatic fibrosis development in rat. The effect of AT1-R blocker on the hepatic fibrosis. Exp Toxicol Pathol 55(2–3):159–166

    Google Scholar 

  40. Rimola A, Londono MC, Guevara G et al (2004) Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation. Transplantation 78(5):686–691

    Article  CAS  PubMed  Google Scholar 

  41. Sookoian S, Fernandez MA, Castano G (2005) Effects of six months losartan administration on liver fibrosis in chronic hepatitis C patients: a pilot study. World J Gastroenterol 11(48):7560–7563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basit H, Tan ML, Webster DR (2022) Histology, Kupffer Cell. In: StatPearls. Treasure Island (FL)

    Google Scholar 

  43. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver. Compr Physiol 3(2):785–797

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nguyen-Lefebvre AT, Horuzsko A (2015) Kupffer cell metabolism and function. J Enzymol Metab 1(1)

    Google Scholar 

  45. Leung PS, Fung ML, Tam MS (2003) Renin-angiotensin system in the carotid body. Int J Biochem Cell Biol 35(6):847–854

    Article  CAS  PubMed  Google Scholar 

  46. Chan H, Leung PS, Tam MS (2007) Effect of angiotensin AT1 receptor antagonist on D-galactosamine-induced acute liver injury. Clin Exp Pharmacol Physiol 34(10):985–991

    Article  CAS  PubMed  Google Scholar 

  47. Hirose A, Ono M, Saibara T et al (2007) Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology 45(6):1375–1381

    Article  CAS  PubMed  Google Scholar 

  48. Atzori L, Poli G, Perra A (2009) Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol 41(8–9):1639–1642

    Article  CAS  PubMed  Google Scholar 

  49. Ibanez P, Solis N, Pizarro M et al (2007) Effect of losartan on early liver fibrosis development in a rat model of nonalcoholic steatohepatitis. J Gastroenterol Hepatol 22(6):846–851

    Article  CAS  PubMed  Google Scholar 

  50. Terui Y, Saito T, Watanabe H et al (2002) Effect of angiotensin receptor antagonist on liver fibrosis in early stages of chronic hepatitis C. Hepatology 36(4 Pt 1):1022

    Article  PubMed  Google Scholar 

  51. Debernardi-Venon W, Martini S, Biasi F et al (2007) AT1 receptor antagonist candesartan in selected cirrhotic patients: effect on portal pressure and liver fibrosis markers. J Hepatol 46(6):1026–1033

    Article  CAS  PubMed  Google Scholar 

  52. Yoshiji H, Noguchi R, Fukui H (2005) Combined effect of an ACE inhibitor, perindopril, and interferon on liver fibrosis markers in patients with chronic hepatitis C. J Gastroenterol 40(2):215–216

    Article  PubMed  Google Scholar 

  53. Daskalopoulos G, Pinzani M, Murray N, Hirschberg R, Zipser RD (1987) Effects of captopril on renal function in patients with cirrhosis and ascites. J Hepatol 4(3):330–336

    Article  CAS  PubMed  Google Scholar 

  54. Pariente EA, Bataille C, Bercoff E, Lebrec D (1985) Acute effects of captopril on systemic and renal hemodynamics and on renal function in cirrhotic patients with ascites. Gastroenterology 88(5 Pt 1):1255–1259

    Article  CAS  PubMed  Google Scholar 

  55. Komeda K, Jin D, Takai S et al (2008) Significance of chymase-dependent angiotensin II formation in the progression of human liver fibrosis. Hepatol Res 38(5):501–510

    Article  CAS  PubMed  Google Scholar 

  56. Shimizu S, Satomura K, Aramaki T, Katsuta Y, Takano T, Omoto Y (2003) Hepatic chymase level in chronic hepatitis: co-localization of chymase with fibrosis. Hepatol Res 27(1):62–66

    Article  CAS  PubMed  Google Scholar 

  57. Li W, Moore MJ, Vasilieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Francis GS (2011) Neurohormonal control of heart failure. Cleve Clin J Med 78:S75–S79

    Article  PubMed  Google Scholar 

  59. Ferrario CM, Ahmad S, Nagata S, Simington SW, Varag- ic J, Kon N et al (2014) An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci 126:461–469

    Google Scholar 

  60. Dixon IM, Ju H, Jassal DS, Peterson DJ (1996) Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Mol Cell Biochem 165:31–45

    Article  CAS  PubMed  Google Scholar 

  61. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13

    Article  CAS  PubMed  Google Scholar 

  62. Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL et al (2016) Zofenopril protects against myocardial ischemia–reperfusion injury by increasing nitric oxide and hydrogen sulfide bioavailability. J Am Heart Assoc 5:e003531. https://doi.org/10.1161/JAHA.116.003531

    Article  PubMed  PubMed Central  Google Scholar 

  63. Guo X, Wang J, Elimban V, Dhalla NS (2008) Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarction. Can J Physiol Pharmacol 86:139–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The infrastructure support for the preparation of this chapter was provided by California State University Los Angeles, Los Angeles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anureet K. Shah .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, A.K., Yadav, S., Yeganehjoo, H. (2023). Implications of Renin-Angiotensin System in Health and Disease. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_1

Download citation

Publish with us

Policies and ethics