Skip to main content

3D Detection of ALMA Sources Through Deep Learning

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

We present a Deep Learning pipeline for the detection of astronomical sources within radiointerferometric simulated data cubes. Our pipeline is constituted by two Deep Learning models: a Convolutional Autoencoder for the detection of sources within the spatial domain of the cube, and a RNN for the denoising and detection of emission peaks in the frequency domain. The combination of spatial and frequency information allows for higher completeness and helps to remove false positives. The pipeline has been tested on simulated ALMA observations achieving better performances and faster execution times with respect to traditional methods. The pipeline can detect \(92\%\) of sources up to a flux of 1.31 Jy/beam with no false positives thus providing a reliable source detection solution for future astronomical radio surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhazhanov, A., et al.: Finding quadruply imaged quasars with machine learning - I. Methods. Mon. Not. R. Astron. Soc. 513(2), pp. 2407–2421 (2022). https://doi.org/10.1093/mnras/stac925

  2. Collaboration, A., et al.: “The astropy project: building an openscience project and status of the v2.0 core package. Astron. J. 156(3), 123 (2018). https://doi.org/10.3847/1538-3881/aabc4f. arXiv: 1801.02634 [astro-ph.IM]

  3. Baron, D.: Machine learning in astronomy: a practical overview (2019). https://doi.org/10.48550/ARXIV.1904.07248

  4. Bowles, M., et al.: Attention-gating for improved radio galaxy classification. Mon. Not. R. Astron. Soc. 501(3), 4579–4595 (2020). https://doi.org/10.1093/mnras/staa3946

  5. Carpenter, J., et al.: The ALMA development program: roadmap to 2030 (2020). https://doi.org/10.48550/ARXIV.2001.11076. https://arxiv.org/abs/2001.11076

  6. Chung, J., et al.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014). arXiv:1412.3555

  7. Connor, L., et al.: Deep radio-interferometric imaging with POLISH: DSA-2000 and weak lensing. Mon. Not. R. Astron. Soc. 514(2), pp. 2614–2626 (2022). https://doi.org/10.1093/mnras/stac1329

  8. Cornwell, T.J.: Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Top. Sig. Process. 2(5), 793–801 (2008). https://doi.org/10.1109/JSTSP.2008.2006388

  9. Duarte, R., Nemmen, R., Navarro, J.P.: Black hole weather forecasting with deep learning: a pilot study. Mon. Not. R. Astron. Soc. 512(4), 5848–5861 (2022). https://doi.org/10.1093/mnras/stac665

  10. Goode, S., et al.: Machine learning for fast transients for the deeper, wider, faster programme with the removal Of BOgus transients (ROBOT) pipeline. Mon. Not. R. Astron. Soc. 513(2), 1742–1754 (2022). https://doi.org/10.1093/mnras/stac983

  11. Hales, C.A., et al.: BLOBCAT: software to catalogue flood-filled blobs in radio images of total intensity and linear polarization. Mon. Not. R. Astron. Soc. 425(2), 979–996 (2012). https://doi.org/10.1111/j.1365-2966.2012.21373.x

  12. Hogbom, J.A.: Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. 15, 417 (1974)

    Google Scholar 

  13. Lin, S.-C., et al.: Estimating cluster masses from SDSS multiband images with transfer learning. Mon. Not. R. Astron. Soc. 512(3), 3885–3894 (2022). https://doi.org/10.1093/mnras/stac725

  14. Longo, G., Merényi, E., Tiňo, P.: Foreword to the focus issue on machine intelligence in astronomy and astrophysics. Publ. Astron. Soc. Pac. 131(1004), 1–6 (2019). ISSN: 00046280, 15383873. https://www.jstor.org/stable/26874447. Visited 24 June 2022

  15. McMullin, J.P., et al.: CASA architecture and applications. In: Shaw, R.A., Hill, F., Bell, D.J. (eds.) Astronomical Data Analysis Software and Systems XVI ASP Conference Series, vol. 376, Proceedings of the Conference Held 15–18 October 2006 in Tucson, Arizona, USA, p. 127 376, October 2007

    Google Scholar 

  16. Nousi, P., et al.: Autoencoder-driven spiral representation learning for gravitational wave surrogate modelling. Neurocomputing 491, 67–77 (2022). https://doi.org/10.1016/j.neucom.2022.03.052

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  Google Scholar 

  18. Pesenson, M.Z., Pesenson, I.Z., McCollum, B.: The data big bang and the expanding digital universe: high-dimensional, complex and massive data sets in an in ationary epoch. Adv. Astron. 2010 (2010), pp. 1–16. https://doi.org/10.1155/2010/350891

  19. Rezaei, S., et al.: DECORAS: detection and characterization of radio-astronomical sources using deep learning. Mon. Not. R. Astron. Soc. 510(4), 5891–5907 (2021). https://doi.org/10.1093/mnras/stab3519

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., Mcclelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, pp. 318–362. MIT Press, Cambridge (1986)

    Chapter  Google Scholar 

  21. Schmidt, K., et al.: Deep learning-based imaging in radio interferometry. Astron. Astrophys. (2022). https://doi.org/10.1051/0004-6361/202142113

  22. Sweere, S.F., et al.: Deep learning-based super-resolution and de-noising for XMM-Newton images (2022). https://doi.org/10.48550/ARXIV.2205.01152

  23. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  24. Westmeier, T., et al.: sofia2 an automated, parallel H source finding pipeline for the WALLABY survey. Mon. Not. R. Astron. Soc. 506(3), 3962–3976 (2021). https://doi.org/10.1093/mnras/stab1881

  25. Yi, Z., et al.: Automatic detection of low surface brightness galaxies from Sloan Digital Sky Survey images. Mon. Not. R. Astron. Soc. 513(3), 3972–3981 (2022). https://doi.org/10.1093/mnras/stac775

  26. Zelinka, I., Brescia, M., Baron, D. (eds.): Intelligent Astrophysics. ECC, vol. 39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65867-0

    Book  Google Scholar 

  27. Zeng, Q., Li, X., Lin, H.: Concat convolutional neural network for pulsar candidate selection. Mon. Not. R. Astron. Soc. 494(3), 3110–3119 (2020). https://doi.org/10.1007/978-3-030-65867-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Delli Veneri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veneri, M.D., Tychoniec, L., Guglielmetti, F., Villard, E., Longo, G. (2023). 3D Detection of ALMA Sources Through Deep Learning. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23618-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23617-4

  • Online ISBN: 978-3-031-23618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics