Skip to main content

Tomography Reconstruction Based on Null Space Search

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13348))

Included in the following conference series:

  • 191 Accesses

Abstract

The paper introduces a new tomography reconstruction approach for gray and binary image reconstruction. The proposed method intends to find a solution by searching for the best linear combination of the basis vectors of the null space of the projection matrix. One of the advantages of the proposed approach is that the projection error remains always extremely low, practically equal to zero, during the reconstruction process. The method applies a gradient based optimization algorithm. A short experimental evaluation, including three relevant and well-know algorithms for comparison, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20, 2542–2553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batenburg, K.J., Sijbers, J.: DART: a fast heuristic algebraic reconstruction algorithm for discrete tomography. In: Proceedings of International Conference on Image Processing (ICIP), pp. 133–136 (2007)

    Google Scholar 

  3. Birgin, E., Martínez, J.: Spectral conjugate gradient method for unconstrained optimization. Appl. Math. Optim. 43, 117–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carmignato, S., Dewulf, W., Leach, R.: Industrial X-Ray Computed Tomography. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-59573-3

    Book  Google Scholar 

  5. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972). https://doi.org/10.1016/0022-5193(72)90180-4, https://www.sciencedirect.com/science/article/pii/0022519372901804

  6. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970). https://doi.org/10.1016/0022-5193(70)90109-8, https://www.sciencedirect.com/science/article/pii/0022519370901098

  7. Herman, G.T.: Image Reconstruction from Projections. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  8. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser (1999)

    Google Scholar 

  9. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser (2007)

    Google Scholar 

  10. Herman, G.T., Kuba, A.: Discrete tomography: Foundations, Algorithms, and Applications. Springer, Heidelberg (2012)

    Google Scholar 

  11. Kisner, S.J.: image reconstruction for X-ray computed tomography in security screening applications. Ph.D. thesis, USA (2013)

    Google Scholar 

  12. Lukić, T.: Discrete tomography reconstruction based on the multi-well potential. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 335–345. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-0_30

    Chapter  Google Scholar 

  13. Lukić, T., Balázs, P.: Binary tomography reconstruction based on shape orientation. Pattern Recogn. Lett. 79, 18–24 (2016)

    Article  Google Scholar 

  14. Lukić, T., Balázs, P.: Limited-view binary tomography reconstruction assisted by shape centroid. Vis. Comput. (Springer) 38, 695–705 (2022)

    Article  Google Scholar 

  15. Lukić, T., Lukity, A.: A spectral projected gradient optimization for binary tomography. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Computational Intelligence in Engineering. SCI, vol. 313, pp. 263–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15220-7_21

    Chapter  Google Scholar 

  16. Lukić, T., Nagy, B.: Deterministic discrete tomography reconstruction method for images on triangular grid. Pattern Recogn. Lett. 49, 11–16 (2014)

    Article  Google Scholar 

  17. Lukić, T., Nagy, B.: Regularized binary tomography on the hexagonal grid. Phys. Scripta 94, 025201(9pp) (2019)

    Google Scholar 

  18. Lukić, T., Balázs, P.: Shape circularity assisted tomography reconstruction. Phys. Scripta 95(10), 105211 (2020). https://doi.org/10.1088/1402-4896/abb633

    Article  Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  20. Palenstijn, W.J., Bédorf, J., Sijbers, J., Batenburg, K.J.: A distributed ASTRA toolbox. Adv. Struct. Chem. Imaging 2(1), 1–13 (2016). https://doi.org/10.1186/s40679-016-0032-z

    Article  Google Scholar 

  21. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. programming. Discrete Appl. Math. 151, 229–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_13

    Chapter  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the financial support of Department of Fundamental Sciences, Faculty of Technical Sciences, University of Novi Sad, in the frame of the Project “Primena opštih disciplina u tehničkim i informatičkim naukama”. T. Lukić also acknowledges support received from the Hungarian Academy of Sciences through the DOMUS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Lukić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukić, T., Kopanja, T. (2023). Tomography Reconstruction Based on Null Space Search. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds) Combinatorial Image Analysis. IWCIA 2022. Lecture Notes in Computer Science, vol 13348. Springer, Cham. https://doi.org/10.1007/978-3-031-23612-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23612-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23611-2

  • Online ISBN: 978-3-031-23612-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics