Skip to main content

Software Library for KUKA Iiwa Robot to Improve the Efficiency of Human-Robot Interaction in Robotic Medical Applications

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2022)

Abstract

The article presents a client-server library for the interaction with the KUKA LBR iiwa collaborative robot via a remote personal computer (PC) in a medical-oriented collaborative robotic system (CRS). An intuitive high-level library implemented in the MathWorks MATLAB software framework includes a server for the KUKA iiwa controller, and a client-based application. The library has more than 30 functions for such operations as calculating forward and inverse kinematics, robot control in Cartesian space, path planning, graphical output, and feedback. The developed software runs on a remote computer connected to the controller of the robot via the TCP/IP protocol. The paper presents the requirements to the software related to the systems and strategies used to control the CRS, and the safety of collaborative human-robot interaction (HRI). The article also presents the description of the technical implementation of the library, its architecture, the scheme of “robot – remote PC” communication, software methods used for interaction with the robot, as well as data flow diagrams (DFDs) for the executable code. As an example of controlling the robot using the developed library, we show the results of a practical experiment: the calculation of the robot’s inverse kinematics and the path coordinates on a given trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, F.-Y.: Parallel healthcare: robotic medical and health process automation for secured and smart social healthcares. IEEE Trans. Comput. Soc. Syst. 7(3), 581–586 (2020)

    Article  Google Scholar 

  2. Fischer, K., Weigelin, H.M., Bodenhagen, L.: Increasing trust in human–robot medical interactions: effects of transparency and adaptability. Paladyn J. Behav. Robot. 9(1), 95–109 (2018)

    Article  Google Scholar 

  3. García, D.H., Esteban, P.G., Lee, H.R., Romeo, M., Senft, E., Billing, E.: Social robots in therapy and care. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 669–670. IEEE, Piscataway (2019)

    Google Scholar 

  4. Scimeca, L., Iida, F., Maiolino, P., Nanayakkara, T.: Human-robot medical interaction. In: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI '20), pp. 660–661. Association for Computing Machinery, New York (2020)

    Google Scholar 

  5. Mohan, M., Kuchenbecker, K.J.: A design tool for therapeutic social-physical human-robot interactions. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 727–729. Association for Computing Machinery, New York (2019)

    Google Scholar 

  6. Liang, J., et al.: Variable admittance control for human-robot collaboration in robot-assisted orthopedic surgery. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1544–1550. IEEE, Piscataway (2019)

    Google Scholar 

  7. KUKA Sunrise.OS. https://www.kuka.com/en-us/products/robotics-systems/software/system-software/sunriseos. Last Accessed 1 September 2022

  8. Hennersperger, C., et al.: Towards MRI-based autonomous robotic US acquisitions: a first feasibility study. IEEE Trans. Med. Imaging 36(2), 538–548 (2017)

    Article  Google Scholar 

  9. Obal, P., Gierlak, P.: EGM toolbox – interface for controlling ABB robots in Simulink. Sensors. 21(22), 7463, 1–17 (2021)

    Google Scholar 

  10. Ostanin, M., Yagfarov, R., Klimchik, A.: Interactive robots control using mixed reality. IFAC-PapersOnLine 52(13), 695–700 (2019)

    Article  Google Scholar 

  11. ROS: Home. https://www.ros.org. Last Accessed 1 September 2022

  12. Mokaram, S., et al.: A ROS-integrated API for the KUKA LBR iiwa collaborative robot. IFAC-PapersOnLine 50(1), 15859–15864 (2017)

    Article  Google Scholar 

  13. Hubicki, C., et al.: Walking and running with passive compliance: lessons from engineering: a live demonstration of the ATRIAS biped. IEEE Robot. Autom. Mag. 25(3), 23–39 (2018)

    Article  Google Scholar 

  14. Chinello, F., Scheggi, S., Morbidi, F., Prattichizzo, D.: Kuka control toolbox. IEEE Robot. Autom. Mag. 18(4), 69–79 (2011)

    Article  Google Scholar 

  15. Sanfilippo, F., Hatledal, L.I., Zhang, H., Fago, M., Pettersen, K.Y.: JOpenShowVar: an open-source cross-platform communication interface to KUKA robots. In: 2014 IEEE International Conference on Information and Automation (ICIA), pp. 1154–1159. IEEE, Piscataway (2014)

    Google Scholar 

  16. Sanfilippo, F., Hatledal, L.I., Zhang, H., Fago, M., Pettersen, K.Y.: Controlling KUKA industrial robots: flexible communication interface JOpenShowVar. IEEE Robot. Autom. Mag. 22, 96–109 (2015)

    Article  Google Scholar 

  17. KUKA KR C4. https://www.kuka.com/en-us/products/robotics-systems/robot-controllers/kr-c4. Last Accessed 1 September 2022

  18. Safeea, M., Neto, P.: KUKA sunrise toolbox: interfacing collaborative robots with MATLAB. IEEE Robot. Autom. Mag. 26(1), 91–96 (2019)

    Article  Google Scholar 

  19. Galin, R., Shiroky, A., Magid, E., Meshcheryakov, R., Mamchenko, M.: Effective functioning of a mixed heterogeneous team in a collaborative robotic system. Inform. Auto. 20(6), 1224–1253 (2021)

    Google Scholar 

  20. Lemaignan, S., Warnier, M., Sisbot, E.A., Clodic, A., Alami, R.: Artificial cognition for social human–robot interaction: an implementation. Artif. Intell. 247, 45–69 (2017)

    Article  MathSciNet  Google Scholar 

  21. Galin, R., Meshcheryakov, R.: Collaborative robots: development of robotic perception system, safety issues, and integration of AI to imitate human behavior. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. Smart Innovation, Systems and Technologies, vol. 187, pp. 175–185. Springer, Singapore (2021)

    Google Scholar 

  22. Galin, R.R., Meshcheryakov, R.V.: Human-robot interaction efficiency and human-robot collaboration. In: Kravets, A. (ed.) Robotics: Industry 4.0 Issues & New Intelligent Control Paradigms. Studies in Systems, Decision and Control, vol. 272, pp. 55–63. Springer, Cham (2020)

    Google Scholar 

  23. Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., Chryssolouris, G.: Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37, 248–253 (2015)

    Article  Google Scholar 

  24. Galin, R., Mamchenko, M.: Human-robot collaboration in the society of the future: a survey on the challenges and the barriers. In: Singh, P.K., Veselov, G., Vyatkin, V., Pljonkin, A., Dodero, J.M., Kumar, Y. (eds.) Futuristic Trends in Network and Communication Technologies. FTNCT 2020. Communications in Computer and Information Science, vol. 1395, pp. 111–122. Springer, Singapore (2021)

    Google Scholar 

  25. Mihelj, M., et al.: Collaborative robots, 2nd edn. Springer, Cham (2019)

    Google Scholar 

  26. Kolpashchikov, D.Y., Laptev, N., Danilov, V.V., Skirnevskiy, I.P., Manakov, R.A., Gerget, O.M.: FABRIK-based inverse kinematics for multi-section continuum robots. In: Proceedings of the 2018 18th International Conference on Mechatronics, pp. 1–8. IEEE, Piscataway (2018)

    Google Scholar 

  27. GitHub – small23/Kuka_LBR_Toolbox. https://github.com/small23/Kuka_LBR_Toolbox. Last Accessed 1 September 2022

Download references

Acknowledgment

The study has been performed under the financial support by the Ministry of Science and Higher Education within the State Task “Research” (basic fundamental) project №FSWW-2020-0014, and by V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (ICS RAS) according to the state project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinat Galin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerget, O. et al. (2022). Software Library for KUKA Iiwa Robot to Improve the Efficiency of Human-Robot Interaction in Robotic Medical Applications. In: Ronzhin, A., Meshcheryakov, R., Xiantong, Z. (eds) Interactive Collaborative Robotics. ICR 2022. Lecture Notes in Computer Science, vol 13719. Springer, Cham. https://doi.org/10.1007/978-3-031-23609-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23609-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23608-2

  • Online ISBN: 978-3-031-23609-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics