Skip to main content

Semi-supervised Multi-domain Learning for Medical Image Classification

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2022)

Abstract

The limitations of domain dependence in neural networks and data scarcity are addressed in this paper by analyzing the problem of semi-supervised medical image classification across multiple visual domains using a single integrated framework. Under this premise, we learn a universal parametric family of neural networks, which share a majority of their weights across domains by learning a few adaptive domain-specific parameters. We train these universal networks on a suitable pretext task that captures a meaningful representation for image classification and further finetune the networks using a small fraction of training data. We perform our experiments on five medical datasets spanning breast, cervical, and colorectal cancer. Extensive experiments on architectures of domain-adaptive parameters demonstrate that our data-deficient universal model performs equivalently to a fully supervised setup, rendering a semi-supervised multi-domain setting with lower numbers of training samples for medical data extremely feasible in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  2. Brosch, T., Tam, R.: Manifold learning of brain MRIs by deep learning. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 633–640. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_78

    Chapter  Google Scholar 

  3. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations In: Proceedings of the 34th International Conference on Neural Information Processing Systems-NIPS 2020, pp. 2546–12558 (2020)

    Google Scholar 

  4. Cheerla, A., Gevaert, O.: Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35(14), i446–i454 (2019)

    Article  Google Scholar 

  5. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  6. Cheng, B., Liu, M., Shen, D., Li, Z., Zhang, D.: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 15(2), 115–132 (2016)

    Article  Google Scholar 

  7. Chhipa, P.C., Upadhyay, R., Grund Pihlgren, G., Saini, R., Uchida, S., Liwicki, M.: Magnification prior: a self-supervised method for learning representations on breast cancer histopathological images. arXiv e-prints arXiv:2203.07707, March 2022

  8. Feng, Y., Liu, Y., Luo, J.: Universal model for multi-domain medical image retrieval (2020). https://doi.org/10.48550/arxiv.2007.08628

  9. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: 6th International Conference on Learning Representations, ICLR 2018 (2018). https://openreview.net/forum?id=S1v4N2l0-

  10. Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 902–909. IEEE (2010)

    Google Scholar 

  11. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016). https://doi.org/10.1001/jama.2016.17216

  12. Hajiramezanali, E., Zamani Dadaneh, S., Karbalayghareh, A., Zhou, M., Qian, X.: Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, p. 9133–9142. Curran Associates, Inc. (2018)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  14. Hussain, E., Mahanta, L.B., Borah, H., Das, C.R.: Liquid based-cytology pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions. Data Brief 30, 105589 (2020)

    Article  Google Scholar 

  15. Imran, A.A.Z., et al.: Self-supervised, semi-supervised, multi-context learning for the combined classification and segmentation of medical images (student abstract). In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13815–13816 (2020). https://doi.org/10.1609/aaai.v34i10.7179

  16. Jamaludin, A., Kadir, T., Zisserman, A.: Self-supervised learning for spinal MRIs. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS 2017. LNCS, vol. 10553, pp. 294–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_34

    Chapter  Google Scholar 

  17. Janowczyk, A., Basavanhally, A., Madabhushi, A.: Stain normalization using sparse autoencoders (StaNoSA): application to digital pathology. Comput. Med. Imaging Graph. 57, 50–61 (2017). Recent Developments in Machine Learning for Medical Imaging Applications

    Article  Google Scholar 

  18. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Nature inspired Smart Information Systems: EU Co-ordination Action, NiSIS 2005, 01 January 2005, pp. 1–9 (2005)

    Google Scholar 

  19. Kather, J.N., et al.: Collection of textures in colorectal cancer histology (2016)

    Google Scholar 

  20. Khosravan, N.: Semi-supervised multi-task learning for lung cancer diagnosis, vol. 2018, pp. 710–713 (2018). https://doi.org/10.1109/EMBC.2018.8512294

  21. Kraljevic, Z., et al..: Multi-domain clinical natural language processing with MedCAT: the medical concept annotation toolkit. Artif. Intell. Med. 117, 102083 (2021)

    Google Scholar 

  22. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017 (2017)

    Google Scholar 

  23. Li, H., Wang, Y., Wan, R., Wang, S., Li, T.Q., Kot, A.: Domain generalization for medical imaging classification with linear-dependency regularization, vol. 33, pp. 3118–3129 (2020)

    Google Scholar 

  24. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  25. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019). Special Issue: Deep Learning in Medical Physics

    Article  Google Scholar 

  26. Mitra, S., Das, N., Dey, S., Chakraborty, S., Nasipuri, M., Naskar, M.K.: Cytology image analysis techniques toward automation: systematically revisited. ACM Comput. Surv. 54(3) (2021).https://doi.org/10.1145/3447238

  27. Mojab, N., et al.: Real-world multi-domain data applications for generalizations to clinical settings. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 677–684 (2020). https://doi.org/10.1109/ICMLA51294.2020.00112

  28. Plissiti, M.E., Dimitrakopoulos, P., Sfikas, G., Nikou, C., Krikoni, O., Charchanti, A.: SIPaKMeD: a new dataset for feature and image based classification of normal and pathological cervical cells in pap smear images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3144–3148 (2018). https://doi.org/10.1109/ICIP.2018.8451588

  29. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In: Guyon, I., et al.. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 1–11. Curran Associates, Inc. (2017)

    Google Scholar 

  30. Rebuffi, S.A., Ehrhardt, S., Han, K., Vedaldi, A., Zisserman, A.: Semi-supervised learning with scarce annotations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3294–3302 (2020)

    Google Scholar 

  31. Rebuffi, S.A., Vedaldi, A., Bilen, H.: Efficient parametrization of multi-domain deep neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8119–8127 (2018). https://doi.org/10.1109/CVPR.2018.00847

  32. Santosh, K., Das, N., Ghosh, S.: Cytology image analysis. In: Santosh, K., Das, N., Ghosh, S. (eds.) Deep Learning Models for Medical Imaging, Chap. 4. Primers in Biomedical Imaging Devices and Systems, pp. 99–123. Academic Press (2022)

    Google Scholar 

  33. Schmarje, L., Santarossa, M., Schröder, S.M., Koch, R.: A survey on semi-, self-and unsupervised learning for image classification. arXiv:2002.08721 (2020)

  34. Sen, A., Mitra, S., Chakraborty, S., Mondal, D., Santosh, K., Das, N.: Ensemble framework for unsupervised cervical cell segmentation. In: 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), pp. 345–350 (2022). https://doi.org/10.1109/CBMS55023.2022.00068

  35. Shen, L., et al.: Multi-domain image completion for random missing input data. IEEE Trans. Med. Imaging 40(4), 1113–1122 (2021)

    Article  Google Scholar 

  36. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567 (2016)

    Google Scholar 

  37. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30, pp. 1195–1204 (2017)

    Google Scholar 

  38. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. IET Image Process. 16(5), 1243–1267 (2022)

    Article  Google Scholar 

  39. Zhou, X., Ito, T., Takayama, R., Wang, S., Hara, T., Fujita, H.: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. In: Carneiro, G., et al. (eds.) LABELS/DLMIA 2016. LNCS, vol. 10008, pp. 111–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaran Das .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 888 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chavhan, R., Banerjee, B., Das, N. (2023). Semi-supervised Multi-domain Learning for Medical Image Classification. In: Santosh, K., Goyal, A., Aouada, D., Makkar, A., Chiang, YY., Singh, S.K. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2022. Communications in Computer and Information Science, vol 1704. Springer, Cham. https://doi.org/10.1007/978-3-031-23599-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23599-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23598-6

  • Online ISBN: 978-3-031-23599-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics