Skip to main content

Abstract

In order to balance the enormous energy consumption in our daily lives, it is necessary to properly store and distribute energy in addition to collecting clean, renewable energy sources. Nowadays, lithium-ion batteries (LIBs) are seen as an efficient form of energy storage and are the subject of the majority of ongoing research. The requirement for more efficient electrode materials, which can deliver higher capacity with long cycle life, becomes the main focus of research, and hence recent breakthroughs have been more concentrated on the fabrication of nanostructured porous electrodes. The current chapter discusses the most recent advancements in hybrid porous electrode materials used in LIBs and lithium sulphur batteries (Li-S batteries) because the work in this field is expanding rapidly. Various types of hybrid electrode materials, including porous carbon, heteroatom-doped carbon materials, metal oxides, and transition metal chalcogenides, are reviewed along with their distinct advantages and properties. The chapter also highlights the advanced strategies employed and reviews the impact of porosity and hybrid porous architecture on the performance of electrode material in LIB. To develop high-performance LIBs with high-rate capability and outstanding cycling stability, porous hybrid electrode materials combine porous active materials with the conductive second phase. The chapter will give the reader an updated picture of recent developments in the porous electrode material for LIBs and Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Zhang et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44(3), 699–728 (2015)

    Article  Google Scholar 

  2. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science 334(6058), 928–935 (2011)

    Article  CAS  Google Scholar 

  3. J. Liang et al., Comparison of two energy management strategies considering power system durability for PEMFC-LIB hybrid logistics vehicle. Energies 14(11), 3262 (2021)

    Article  CAS  Google Scholar 

  4. H. Ji et al., Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5(1), 1–7 (2014)

    Article  CAS  Google Scholar 

  5. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)

    Article  CAS  Google Scholar 

  6. F. Schüth, Engineered porous catalytic materials. Annu. Rev. Mater. Res. 35, 209 (2005)

    Article  Google Scholar 

  7. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008)

    Article  CAS  Google Scholar 

  8. M.S. Islam, C.A. Fisher, Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43(1), 185–204 (2014)

    Article  CAS  Google Scholar 

  9. W. Dong, D.R. Rolison, B. Dunna, Electrochemical properties of high surface area vanadium oxide aerogels. Electrochem. Solid-State Lett. 3(10), 457 (2000)

    Article  CAS  Google Scholar 

  10. C.K. Chan et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  CAS  Google Scholar 

  11. Y. Shao-Horn et al., Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging. J. Electrochem. Soc. 146(7), 2404 (1999)

    Article  CAS  Google Scholar 

  12. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  13. J.L. Tirado, Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects. Mater. Sci. Eng. R. Rep. 40(3), 103–136 (2003)

    Article  Google Scholar 

  14. Y. Zheng et al., Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim. Acta 52(19), 5863–5867 (2007)

    Article  CAS  Google Scholar 

  15. P. Lian et al., Electrochim. Acta 56, 834 (2010)

    CAS  Google Scholar 

  16. L. Ji et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)

    Article  CAS  Google Scholar 

  17. J. Wang et al., Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 115(5), 2529–2536 (2011)

    Article  CAS  Google Scholar 

  18. L. Li et al., [cu(dap)2Cl] as an efficient visible-light-driven photoredox catalyst in carbon–carbon bond-forming reactions. Chem.—Eur. J. 18, 11417 (2012)

    Article  CAS  Google Scholar 

  19. Z. Wang et al., Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New J. Chem. 41(14), 6693–6699 (2017)

    Article  CAS  Google Scholar 

  20. P. Wang et al., NiCo2N hollow sphere with interconnected nanosheets shell: A potential anode material for high performance lithium-ion batteries. Chem. Eng. J. 425, 130607 (2021)

    Article  CAS  Google Scholar 

  21. Y. Xing et al., N-doped hollow urchin-like anatase TiO2@ C composite as a novel anode for Li-ion batteries. J. Power Sources 385, 10–17 (2018)

    Article  CAS  Google Scholar 

  22. X. Zhang et al., Promoting transport kinetics in Li-ion battery with aligned porous electrode architectures. Nano Lett. 19(11), 8255–8261 (2019)

    Article  CAS  Google Scholar 

  23. X. Zhang et al., Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes. Nano Lett. 21(13), 5896–5904 (2021)

    Article  CAS  Google Scholar 

  24. V. Gupta et al., Additive manufacturing enabled, microarchitected, hierarchically porous polylactic-acid/Lithium iron phosphate/carbon nanotube nanocomposite electrodes for high performance Li-ion batteries. J. Power Sources 494, 229625 (2021)

    Article  CAS  Google Scholar 

  25. M. Müller et al., Effect of nanostructured and open-porous particle morphology on electrode processing and electrochemical performance of Li-ion batteries. ACS Appl. Energy Mater. 4(2), 1993–2003 (2021)

    Article  Google Scholar 

  26. S. Guo et al., Porous TiO2–FeTiO3@ carbon nanocomposites as anode for high-performance lithium-ion batteries. J. Alloys Compd. 858, 157635 (2021)

    Article  CAS  Google Scholar 

  27. A. Nazir et al., Si nanoparticles confined within a conductive 2D porous cu-based metal–organic framework (Cu3 (HITP) 2) as potential anodes for high-capacity Li-ion batteries. Chem. Eng. J. 405, 126963 (2021)

    Article  CAS  Google Scholar 

  28. K. Chu et al., NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes. J. Alloys Compd. 854, 157264 (2021)

    Article  CAS  Google Scholar 

  29. N. Wang et al., Electrolytic silicon/graphite composite from SiO2/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries. Rare Metals 41(2), 438–447 (2022)

    Article  CAS  Google Scholar 

  30. M. Faizan et al., MoO3@ MoS2 core-shell structured hybrid anode materials for lithium-ion batteries. Nano 12(12), 2008 (2022)

    CAS  Google Scholar 

  31. B.-L. Yan et al., A simplified electrophoretic deposition route for sandwiched structure-based Mn3O4/G composite electrodes as high-capacity anodes for lithium-ion batteries. J. Alloys Compd. 905, 164121 (2022)

    Article  CAS  Google Scholar 

  32. G. Yang et al., “Powder electrodeposition” synthesis of NiO-Ni/CNTs composites with high performances of lithium storage battery. J. Alloys Compd. 898, 163005 (2022)

    Article  CAS  Google Scholar 

  33. P. Barnes et al., Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nat. Mater. 21, 1–9 (2022)

    Article  Google Scholar 

  34. X. Zhang et al., LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett. 13(6), 2822–2825 (2013)

    Article  CAS  Google Scholar 

  35. H. Yang et al., Fabrication and characteristics of high-capacity LiNi0.8Co0.15Al0.05O2 with monodisperse yolk–shell spherical precursors by a facile method. RSC Adv. 4(67), 35522–35527 (2014)

    Article  CAS  Google Scholar 

  36. Y. Koyama et al., Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO[sub 2]-LiNiO[sub 2]-LiMnO[sub 2]. J. Electrochem. Soc. 151(9), A1499 (2004)

    Article  CAS  Google Scholar 

  37. Y. Huang et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li–S batteries. Adv. Sci. 9(12), 2106004 (2022)

    Article  CAS  Google Scholar 

  38. L. Kong et al., Current-density dependence of Li 2 S/Li 2 S 2 growth in lithium–sulfur batteries. Energy Environ. Sci. 12(10), 2976–2982 (2019)

    Article  CAS  Google Scholar 

  39. S. Choudhury, Hybrid cathode materials for lithium-sulfur batteries. Curr. Opin. Electrochem. 21, 303–310 (2020)

    Article  CAS  Google Scholar 

  40. Z. Li et al., Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium–sulfur batteries. Adv. Funct. Mater. 29(31), 1902322 (2019)

    Article  Google Scholar 

  41. H. Chen et al., Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery. Matter 2(6), 1605–1620 (2020)

    Article  Google Scholar 

  42. M. Kopeć et al., Polyacrylonitrile-derived nanostructured carbon materials. Prog. Polym. Sci. 92, 89–134 (2019)

    Article  Google Scholar 

  43. X. Chen et al., Covalent organic framework derived boron/oxygen codoped porous carbon on CNTs as an efficient sulfur host for lithium–sulfur batteries. Small Methods 3(11), 1900338 (2019)

    Article  CAS  Google Scholar 

  44. M. Gao et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries. J. Alloys Compd. 857, 157554 (2021)

    Article  CAS  Google Scholar 

  45. S.-S. Yao et al., The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries. New Carbon Mater. 36(3), 606–615 (2021)

    Article  CAS  Google Scholar 

  46. J. Ren et al., A reduced graphene oxide/nitrogen, phosphorus doped porous carbon hybrid framework as sulfur host for high performance lithium-sulfur batteries. Carbon 140, 30–40 (2018)

    Article  CAS  Google Scholar 

  47. Z. Pan et al., Progress and perspectives of organosulfur for lithium–sulfur batteries. Adv. Energy Mater. 12(8), 2103483 (2022)

    Article  CAS  Google Scholar 

  48. X. Zhang et al., Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy Environ. Sci. 13(4), 1076–1095 (2020)

    Article  CAS  Google Scholar 

  49. S. Chen et al., 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-Sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014)

    Article  Google Scholar 

  50. H.B. Wu et al., Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8), 2526–2542 (2012)

    Article  CAS  Google Scholar 

  51. R. Liu et al., Hydrothermal synthesis of hollow SnO2 spheres with excellent electrochemical performance for anodes in lithium ion batteries. Mater. Res. Bull. 96, 443–448 (2017)

    Article  CAS  Google Scholar 

  52. O. Eroglu, M.S. Kiai, H. Kizil, Glass fiber separator coated by boron doped anatase TiO2 for high-rate Li–S battery. Mater. Res. Bull. 129, 110917 (2020)

    Article  CAS  Google Scholar 

  53. S. Deng et al., Dipolar and catalytic effects of an Fe 3 O 4 based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries. Inorg. Chem. Front. 8(7), 1771–1778 (2021)

    Article  CAS  Google Scholar 

  54. T. Kavinkumar, H.H. Lee, D.-H. Kim, Design of all-solid-state hybrid supercapacitor based on mesoporous CoSnO3@ RGO nanorods and B-doped RGO nanosheets grown on Ni foam for energy storage devices of high energy density. Appl. Surf. Sci. 541, 148354 (2021)

    Article  CAS  Google Scholar 

  55. M. Pumera, Z. Sofer, A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2(24), 8981–8987 (2014)

    Article  CAS  Google Scholar 

  56. Z. Wan et al., Core–Shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 10(23), 4975–4981 (2014)

    Article  CAS  Google Scholar 

  57. B. Ouyang et al., MoS2 anchored free-standing three dimensional vertical graphene foam based binder-free electrodes for enhanced lithium-ion storage. Electrochim. Acta 194, 151–160 (2016)

    Article  CAS  Google Scholar 

  58. X. Ning et al., In-situ construction of interconnected N-doped porous carbon-carbon nanotubes networks derived from melamine anchored with MoS2 for high performance lithium-ion batteries. J. Alloys Compd. 744, 75–81 (2018)

    Article  CAS  Google Scholar 

  59. K. Sun et al., Improvement of Li-S battery electrochemical performance with 2D TiS2 additive. Electrochim. Acta 292, 779–788 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author, Anisha Chaudhary expresses her thanks to DST for providing SERB-National Post-Doctoral Fellowship (file no. PDF/2017/002601).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teotia, S., Chaudhary, A. (2023). Electrode Materials for High Energy Density Li-Ion. In: Ezema, F.I., Lokhande, C.D., Lokhande, A.C. (eds) Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications . Springer, Cham. https://doi.org/10.1007/978-3-031-23401-9_8

Download citation

Publish with us

Policies and ethics