Skip to main content

An Overview of the Anatomy and Physiology of Nasal Passage from Drug Delivery Point of View

  • Chapter
  • First Online:
Nasal Drug Delivery

Abstract

This chapter covers the anatomy and physiology of the nasal passage with special focus on utilizing the nasal passage for delivering drugs for disease treatment. The total length of the nasal cavity is 120–140 mm and the total surface area is about 160 cm2. Also, the total volume is nearly 15 ml. The flow of air and particles in the cavity is controlled by structures within it. The sense of smell is controlled by the nasal cavity’s olfactory area. Nasal blood flow can be affected by a variety of causes. The vasomotor response of the nose is influenced by a variety of stimuli, both locally and generally. Changes in ambient temperature and humidity, topical application of vasoactive medications, external compression of major veins in the neck, trauma, and inflammation are all examples of local factors. This chapter discusses further details about how this nasal passage can be sued for drug delivery and as an absorption surface for the drugs whether small molecules or macro molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aulton ME, Taylor KMG. Aulton’s pharmaceutics; the design and manufacture of medicines. 5th ed. Elsevier Ltd.; 2018. p. 671–89.

    Google Scholar 

  2. Nathan Geurkink MD, Hanover NH, et al. Nasal anatomy, physiology, and function. J Allergy Clin Immunol. 1983;72(2):123–8.

    Google Scholar 

  3. Holmes TH, Goode H, Wolf S, Wolff HG. The nose. Springfield: Charles C Thomas; 1950.

    Google Scholar 

  4. Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol. 2014;4(6):435–46.

    Google Scholar 

  5. Naclerio RM, Pinto J, Assanasen P, Baroody FM. Rhinology. 2007;45(2):102–11. (ISSN: 0300-0729)

    PubMed  Google Scholar 

  6. Archer SM. Nasal Physiology: Overview, Anatomy of the Nose, Nasal Airflow (medscape.com), 2021.

    Google Scholar 

  7. Freeman SC, Karp DA, Kahwaji CI. Physiology, Nasal. 2022 May 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 30252342.

    Google Scholar 

  8. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin. 2016;6(4):268–86.

    Article  Google Scholar 

  9. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug Administration for Brain Targeting. Brain Res Bull. 2018;143:155–70.

    Article  PubMed  Google Scholar 

  10. Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: a review of non-clinical brain targeting studies. J Control Release. 2018;270:89–100.

    Article  CAS  PubMed  Google Scholar 

  11. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 1973;(195):44–52.

    Google Scholar 

  12. Jain H, Prabhakar B, Shende P. Modulation of olfactory area for effective transportation of actives in CNS disorders. J Drug Deliv Sci Technol. 2022;68:103091.

    Article  CAS  Google Scholar 

  13. Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm. 2021;608:121068.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, Xia F, et al. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale. 2017;9(3):1174–83.

    Article  CAS  PubMed  Google Scholar 

  15. Trabut S, Friedrich H, Caversaccio M, Negoias S. Challenges in topical therapy of chronic rhinosinusitis: the case of nasal drops application – a systematic review. Auris Nasus Larynx. 2020;47(4):536–43.

    Article  PubMed  Google Scholar 

  16. Rollema C, van Roon EN, de Vries TW. Inadequate quality of administration of intranasal corticosteroid sprays. J Asthma Allergy. 2019;12:91–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, H.K.S., Lim-Dy, A., Pathak, Y.V. (2023). An Overview of the Anatomy and Physiology of Nasal Passage from Drug Delivery Point of View. In: Pathak, Y.V., Yadav, H.K.S. (eds) Nasal Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-031-23112-4_1

Download citation

Publish with us

Policies and ethics