Skip to main content

The Potential Risks of Pressure Support Ventilation

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2023

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1318 Accesses

Abstract

Pressure support ventilation (PSV) is the most commonly used mode of assisted ventilation in the intensive care unit. Setting the ventilator in PSV mode appears to be easy, yet optimizing patient-ventilator interaction in terms of matching a patient’s ventilatory demands with the level of assist, and the neural inspiratory time (Ti) with the mechanical Ti, is particularly challenging. Excessive assist can often occur during PSV, leading to weak or ineffective efforts and periodic breathing, promoting diaphragmatic injury and prolonged mechanical ventilation. Additionally, mismatch between mechanical and neural Ti almost invariably occurs, leading to expiratory asynchronies and prohibiting accurate measurement of driving pressure, placing patients with high respiratory drive at risk of lung injury. Three types of problem hindering patient-ventilator interaction in PSV can be identified. First, factors inherent to the operation of PSV, which include the limited dependence, and thus matching, between mechanical Ti and neural Ti, and the delivery, after ventilator triggering and independently of the patient’s effort, of a minimum tidal volume, depending on the level of pressure support. Second, the response pattern of the control-of-breathing system to changes in ventilatory demands, which is mediated mainly by changes in effort and minimally by changes in respiratory rate. Lastly, the lack of clinical signs of excessive ventilatory assist, and automated monitoring tools, make optimization of patient-ventilator interaction during PSV difficult. Understanding the challenges of PSV can facilitate prompt recognition and management of the problems it may create, and help provide lung- and diaphragm-protective ventilation during PSV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Haren F, Pham T, Brochard L, et al. Spontaneous breathing in early acute respiratory distress syndrome: insights from the large observational study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study. Crit Care Med. 2019;47:229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thille AW, Lyazidi A, Richard JCM, Galia F, Brochard L. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med. 2009;35:1368–76.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akoumianaki E, Prinianakis G, Kondili E, Malliotakis P, Georgopoulos D. Physiologic comparison of neurally adjusted ventilator assist, proportional assist and pressure support ventilation in critically ill patients. Respir Physiol Neurobiol. 2014;203:82–9.

    Article  PubMed  Google Scholar 

  4. Prinianakis G, Kondili E, Georgopolous D. Patient-ventilator interaction: an overview. Respir Care Clin N Am. 2005;11:201–24.

    Article  PubMed  Google Scholar 

  5. Prinianakis G, Plataki M, Kondili E, Klimathianaki M, Vaporidi K, Georgopoulos D. Effects of relaxation of inspiratory muscles on ventilator pressure during pressure support. Intensive Care Med. 2008;34:70–4.

    Article  PubMed  Google Scholar 

  6. Georgopoulos D, Mitrouska I, Bshouty Z, Webster K, Patakas D, Younes M. Respiratory response to CO2 during pressure-support ventilation in conscious normal humans. Am J Respir Crit Care Med. 1997;156:146–54.

    Article  CAS  PubMed  Google Scholar 

  7. Lilitsis E, Stamatopoulou V, Andrianakis E, et al. Inspiratory effort and breathing pattern change in response to varying the assist level: a physiological study. Respir Physiol Neurobiol. 2020;280:103474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akoumianaki E, Vaporidi K, Georgopoulos D. The injurious effects of elevated or nonelevated respiratory rate during mechanical ventilation. Am J Respir Crit Care Med. 2019;199:149–57.

    Article  CAS  PubMed  Google Scholar 

  9. Randerath W, Schiza S, Deleanu O, Pepin JL. Central sleep apnoea and periodic breathing in heart failure: prognostic significance and treatment options. Eur Respir Rev. 2019;28:190084.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meza S, Mendez M, Ostrowski M, Younes M. Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J Appl Physiol. 1985;1998(85):1929–40.

    Google Scholar 

  11. Parthasarathy S, Tobin MJ. Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med. 2002;166:1423–9.

    Article  PubMed  Google Scholar 

  12. Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.

    Article  CAS  PubMed  Google Scholar 

  13. Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40:1254–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Urner M, Mitsakakis N, Vorona S, et al. Identifying subjects at risk for diaphragm atrophy during mechanical ventilation using routinely available clinical data. Respir Care. 2021;66:551–8.

    Article  PubMed  Google Scholar 

  15. Goligher EC, Fan E, Herridge MS, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.

    Article  PubMed  Google Scholar 

  16. Zambon M, Beccaria P, Matsuno J, et al. Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med. 2016;44:1347–52.

    Article  PubMed  Google Scholar 

  17. Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.

    Article  CAS  PubMed  Google Scholar 

  18. Carteaux G, Cordoba-Izquierdo A, Lyazidi A, Heunks L, Thille AW, Brochard L. Comparison between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory effort. Crit Care Med. 2016;44:503–11.

    Article  PubMed  Google Scholar 

  19. Terzi N, Pelieu I, Guittet L, et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med. 2010;38:1830–7.

    Article  PubMed  Google Scholar 

  20. Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43:184–91.

    Article  PubMed  Google Scholar 

  21. Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.

    Article  PubMed  Google Scholar 

  22. Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201:20–32.

    Article  PubMed  Google Scholar 

  23. Goligher EC, Dres M, Patel BK, et al. Lung- and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020;202:950–61.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yamada Y, Du HL. Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol (1985). 2000;88:2143–50.

    Google Scholar 

  25. Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34–47.

    Article  PubMed  Google Scholar 

  26. Liu L, Xu XT, Yu Y, Sun Q, Yang Y, Qiu HB. Neural control of pressure support ventilation improved patient-ventilator synchrony in patients with different respiratory system mechanical properties: a prospective, crossover trial. Chin Med J. 2021;134:281–91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Karageorgos V, Proklou A, Vaporidi K. Lung and diaphragm protective ventilation: a synthesis of recent data. Expert Rev Respir Med. 2022;16:375–90.

    CAS  PubMed  Google Scholar 

  28. Yoshida T, Fujino Y, Amato MBP, Kavanagh BP. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;195:985–92.

    Article  PubMed  Google Scholar 

  29. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.

    Article  PubMed  Google Scholar 

  30. Jiang TX, Reid WD, Belcastro A, Road JD. Load dependence of secondary diaphragm inflammation and injury after acute inspiratory loading. Am J Respir Crit Care Med. 1998;157:230–6.

    Article  CAS  PubMed  Google Scholar 

  31. Vaporidi K. NAVA and PAV+ for lung and diaphragm protection. Curr Opin Crit Care. 2020;26:41–6.

    Article  PubMed  Google Scholar 

  32. Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.

    Article  CAS  PubMed  Google Scholar 

  33. Vaporidi K, Psarologakis C, Proklou A, et al. Driving pressure during proportional assist ventilation: an observational study. Ann Intensive Care. 2019;9:1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.

    Article  CAS  PubMed  Google Scholar 

  35. Soundoulounaki S, Akoumianaki E, Kondili E, et al. Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions in pressure support ventilation. Crit Care. 2020;24:467.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Telias I, Spadaro S. Techniques to monitor respiratory drive and inspiratory effort. Curr Opin Crit Care. 2020;26:3–10.

    Article  PubMed  Google Scholar 

  37. Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23:346.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tobin MJ, Jubran A, Laghi F. Respiratory drive measurements do not signify conjectural patient self-inflicted lung injury. Am J Respir Crit Care Med. 2021;203:142–3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Proklou A, Papadakis E, Kondili E, et al. Ventilatory ratio threshold for unassisted breathing: a retrospective exploratory analysis. Respir Care. 2021;66:1699–703.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vaporidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proklou, A., Karageorgos, V., Vaporidi, K. (2023). The Potential Risks of Pressure Support Ventilation. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2023. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-23005-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23005-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23004-2

  • Online ISBN: 978-3-031-23005-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics