Skip to main content

Software Package for High-Performance Computations in Airframe Assembly Modeling

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13708))

Included in the following conference series:

Abstract

Airframe assembly modeling is a complex problem that includes computations for large-scale compliant parts, variation analysis, optimization of fastening procedures and many other problems that occur in manufacturing process. At the same time the majority of these problems involve solving similar contact problems. It is often the most time-consuming part of computations needed to determine stress state of the assembled parts for further analysis. To overcome the problem and provide computations for serial production in reasonable time a special parallel software package called ASRP (Assembly Simulation of Riveting Process) was developed. The paper is devoted to the description of the software, problems and approach that combines variation simulation and HPC for aircraft assembly simulation. The main focus of this work is made on the analysis of temporary fastener patterns used during assembly. To demonstrate the efficiency of high-performance computing, we provide several industrial examples of the analysis for the fastening patterns in aircraft assembly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceglarek, D., Huang, W., Zhou, S., Ding, Y., Kumar, R., et al.: Time-based competition in multistage manufacturing: stream-of-variation analysis (SOVA) methodology – review. J. Flexible Manufacturing Syst. 16, 11–44 (2009)

    Article  MATH  Google Scholar 

  2. Hu, M., Lin, Z., Lai, X., Ni, J.: Simulation and analysis of assembly processes considering compliant, non-ideal parts and tooling variations. Int. J. Mach. Tools Manuf 41(15), 2233–2243 (2001)

    Article  Google Scholar 

  3. Söderberg, R., Lindkvist, L., Wärmefjord, K., Carlson, J.S.: Virtual geometry assurance process and toolbox. Procedia CIRP 43, 3–12 (2016)

    Article  Google Scholar 

  4. Gao, J., Chase, K.W., Magleby, S. P.: Comparison of assembly tolerance analysis by the direct linearization and modified monte carlo simulation methods. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 1, pp. 353‒360. Boston, MA (1995)

    Google Scholar 

  5. Saadat, M., Cretin, L., Sim, R.: Deformation analysis of large aerospace components during assembly. Int. J. Adv. Manuf. Technol. 41, 145–155 (2009)

    Article  Google Scholar 

  6. Falgarone, H., Thiebaut, F., Coloos, J., Mathieu, L.: Variation simulation during assembly of nonrigid components. Realistic assembly simulation with Anatoleflex software. In: 14th CIRP CAT 2016 – CIRP Conference on Computer Aided Tolerancing, 43, pp. 202–207 (2016)

    Google Scholar 

  7. Wang, H., Si, S.: A FEA simulation model for thin-walled C-section composite beam assembling with R-angle deviation. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 2 (2014)

    Google Scholar 

  8. DCS Software Solutions. http://www.3dcs.com Accessed 09 Sept 2022

  9. Tecnomatix Variation Analysis. https://www.plm.automation.siemens.com/global/ru/products/tecnomatix/. Accessed 09 Sept 2022

  10. Wärmefjord, K., Lindkvist, L., Söderberg, R.: Tolerance simulation of compliant sheet metal assemblies using automatic node-based contact detection. In: ASME 2008 International Mechanical Engineering Congress and Exposition, vol. 14, pp. 35–44 (2008)

    Google Scholar 

  11. Jareteg, C., Wärmefjord, K., Cromvik, C., Söderberg, R., Lindkvist, L., et al.: Geometry assurance integrating process variation with simulation of spring-in for composite parts and assemblies. In: ASME 2014 International Mechanical Engineering Congress and Exposition, vol. 2A (2014)

    Google Scholar 

  12. Lorin, L., Lindkvist, L., Söderberg, R.: Variation simulation of stresses using the method of influence coefficients. J. Computing Inf. Science in Eng. 14(1) (2014)

    Google Scholar 

  13. Lupuleac, S., Kovtun, M., Rodionova, O., Marguet, B.: Assembly simulation of riveting process. SAE Int. J. Aerosp. 2, 193–198 (2010)

    Article  Google Scholar 

  14. Lupuleac, S., Zaitseva, N., Stefanova, M., Berezin, S., Shinder, J., et al.: Simulation and optimization of airframe assembly process. In: ASME International Mechanical Engineering Congress and Exposition, vol. 2A (2018)

    Google Scholar 

  15. Stefanova, M., Minevich, O., Baklanov, S.: Convex optimization techniques in compliant assembly simulation. Optim. Eng. (2020)

    Google Scholar 

  16. Dmitriev, A.Y., Vashukov, Yu.A., Mitroshkina, T.A.: Robust design and technological preparation for the production of aircraft products. Samara: Publishing House of SSAU (2016)

    Google Scholar 

  17. Guseva, R.I. Features of aircraft airframe assembly technology. Komsomolsk-on-Amur: FGBOU VPO “KnAGTU” (2013, in Russian)

    Google Scholar 

  18. Mueller, R., Vette, M., Masiak, T., Duppe, B.: Intelligent real time inspection of rivet quality supported by human-robot-collaboration. SAE Int. J. Adv. Curr. Prac. in Mobility 2(2), 811‒817 (2020)

    Google Scholar 

  19. Assembly Automation Takes Off in Aerospace Industry (2015). https://www.assemblymag.com/articles/92790-assembly-automation-takes-off-in-aerospace-industry. Accessed 09 Sept 2022

  20. Weber, A.: Assembling the super jumbo. Assembly 48(9), 66–77 (2005)

    Google Scholar 

  21. Lorin, S., Cromvik, C., Edelvik, F., Lindkvist, L., Söderberg, R.: Variation Simulation of welded assemblies using a thermo-elastic finite element model. J. Computing and Information Science in Eng. 14(3) (2013)

    Google Scholar 

  22. Zaitseva, N., Pogarskaia, T., Minevich, O., Shinder, J.: Simulation of Aircraft Assembly via ASRP Software. SAE Technical Paper (2019)

    Google Scholar 

  23. Zaitseva, N., Lupuleac, S., Khashba, V., Shinder, J., Bonhomme, E.: Approaches to initial gap modeling in final aircraft assembly simulation. In: ASME International Mechanical Engineering Congress and Exposition, vol. 2B (2020)

    Google Scholar 

  24. Zaitseva, N.: Part deviation modeling and variation analysis for aircraft assemblies. Dissertation, SPbPU (2021)

    Google Scholar 

  25. Lupuleac, S., Pogarskaia, T., Churilova, M., Kokkolaras, M., Bonhomme, E.: Optimization of fastener pattern in airframe assembly. Assem. Autom. 40(5), 723–733 (2020)

    Article  Google Scholar 

  26. Pogarskaia, T., Lupuleac, S., Bonhomme, E.: Novel approach to optimization of fastener pattern for airframe assembly process. Procedia CIRP 93, 1151–1157 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Russian Science Foundation (project No. 22–19-00062, https://rscf.ru/en/project/22-19-00062/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Zaitseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaitseva, N., Pogarskaia, T. (2022). Software Package for High-Performance Computations in Airframe Assembly Modeling. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science, vol 13708. Springer, Cham. https://doi.org/10.1007/978-3-031-22941-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22941-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22940-4

  • Online ISBN: 978-3-031-22941-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics