Skip to main content

Performance Analysis of GPU-Based Code for Complex Plasma Simulation

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13708))

Included in the following conference series:

  • 766 Accesses

Abstract

According to the TOP-500 supercomputer ranking [27], since 2017, the share of supercomputers which have NVIDIA V100 and A100 graphics accelerators has been continuously growing, reaching 80% by November 2021 from the total number of supercomputers with accelerators and co-processors. This paper presents the results of an assessment of energy and economic efficiency, as well as the performance study of using V100 and A100 graphics accelerators in the framework of complex plasma physics. In addition, the use of several accelerators for one calculation is considered. In order to quantify the effectiveness of the considered devices, we use the following metrics: calculation time, resource efficiency, economical efficiency, power efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., Khrapak, A.G., Morfill, G.E.: Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421(1–2), 1–103 (2005). https://doi.org/10.1016/j.physrep.2005.08.007

    Article  MathSciNet  Google Scholar 

  2. Schweigert, V.A., Schweigert, I.V., Melzer, A., Homann, A., Piel, A.: Alignment and instability of dust crystals in plasmas. Phys. Rev. E 54(4), 4155 (1996)

    Article  Google Scholar 

  3. Vladimirov, S.V., Maiorov, S.A., Ishihara, O.: Molecular dynamics simulation of plasma flow around two stationary dust grains. Phys. Plasmas 10(10), 3867–3873 (2003)

    Article  Google Scholar 

  4. Sukhinin, G.I., et al.: Plasma anisotropy around a dust particle placed in an external electric field. Phys. Rev. E 95(6), 063207 (2017)

    Article  Google Scholar 

  5. Kompaneets, R., Morfill, G.E., Ivlev, A.V.: Wakes in complex plasmas: a self-consistent kinetic theory. Phys. Rev. E 93(6), 063201 (2016)

    Article  Google Scholar 

  6. Lisin, E.A., et al.: Experimental study of the nonreciprocal effective interactions between microparticles in an anisotropic plasma. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  7. Khrapak, S.A., Ivlev, A.V., Morfill, G.E., Thomas, H.M.: Ion drag force in complex plasmas. Phys. Rev. E 66(4), 046414 (2002)

    Article  Google Scholar 

  8. Ignatov, A.M.: Collective ion drag force. Plasma Phys. Rep. 45(9), 850–854 (2019). https://doi.org/10.1134/S1063780X19090046

    Article  Google Scholar 

  9. Klumov, B.A.: On the effect of confinement on the structure of a complex (dusty) plasma. JETP Lett. 110(11), 715–721 (2019). https://doi.org/10.1134/S0021364019230097

    Article  Google Scholar 

  10. Salnikov, M., Fedoseev, A., Sukhinin, G.: Plasma parameters around a chain-like structure of dust particles in an external electric field. Molecules 26(13), 3846 (2021)

    Article  Google Scholar 

  11. Yakovlev, E.V., Ovcharov, P.V., Dukhopelnikov, D.V., Yurchenko, S.O.: Experimental approach for obtaining a complex (dusty) plasma fluid. In: Journal of Physics: Conference Series, vol. 1348(1), p. 012094. IOP Publishing (2019)

    Google Scholar 

  12. Nguyen, T.T.N., Sasaki, M., Tsutsumi, T., et al.: Formation of spherical Sn particles by reducing SnO2 film in floating wire-assisted H2/Ar plasma at atmospheric pressure. Sci. Rep. 10, 17770 (2020). https://doi.org/10.1038/s41598-020-74663-z

    Article  Google Scholar 

  13. Martinu, L., Poitras, D.: Plasma deposition of optical films and coatings: a review. J. Vacuum Sci. Technol. A Vacuum Surf. Films 18(6), 2619–2645 (2000). https://doi.org/10.1116/1.1314395

    Article  Google Scholar 

  14. Shoyama, M., Yoshioka, H., Matsusaka, S.: Charging and levitation of particles using UV irradiation and electric field. IEEE Trans. Indus. Appl. 58, 776–782 (2021). https://doi.org/10.1109/TIA.2021.3123930

    Article  Google Scholar 

  15. Nikolaev, V.S., Timofeev, A.V.: Nonhomogeneity of phase state in a dusty plasma monolayer with nonreciprocal particle interactions. Phys. Plasmas 28(3), 033704 (2021). https://doi.org/10.1063/5.0031081

    Article  Google Scholar 

  16. Hariprasad, M.G., et al.: Self-sustained non-equilibrium co-existence of fluid and solid states in a strongly coupled complex plasma system. Sci. Rep. 12(1), 1–12 (2022)

    Article  Google Scholar 

  17. Kolotinskii, D.A., Nikolaev, V.S., Timofeev, A.V.: Effect of structural inhomogeneity and nonreciprocal effects in the interaction of macroparticles on the dynamic properties of a dusty plasma monolayer. JETP Lett. 113, 510–517 (2021). https://doi.org/10.1134/S0021364021080063

    Article  Google Scholar 

  18. Piel, A.: Molecular dynamics simulation of ion flows around microparticles. Phys. Plasmas 24(3), 033712 (2017). https://doi.org/10.1063/1.4978791

    Article  Google Scholar 

  19. Matthews, L.S., et al.: Dust charging in dynamic ion wakes. Phys. Plasmas 27(2), 023703 (2020). https://doi.org/10.1063/1.5124246

    Article  Google Scholar 

  20. Eastman, P., et al.: OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13(7), e1005659 (2017). https://doi.org/10.1371/journal.pcbi.1005659

    Article  Google Scholar 

  21. Kondratyuk, N., Nikolskiy, V., Pavlov, D., Stegailov, V.: GPU-accelerated molecular dynamics: state-of-art software performance and porting from Nvidia CUDA to AMD HIP. Int. J. High Perform. Comput. Appl. 35(4), 312–324 (2021). https://doi.org/10.1177/10943420211008288

    Article  Google Scholar 

  22. Kostenetskiy, P.S., Chulkevich, R.A., Kozyrev, V.I.: HPC resources of the higher school of economics. In: Journal of Physics: Conference Series, vol. 1740(1), P. 012050 (2021). https://doi.org/10.1088/1742-6596/1740/1/012050

  23. Stegailov, V., et al.: Early performance evaluation of the hybrid cluster with torus interconnect aimed at molecular-dynamics simulations. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 327–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78024-5_29

    Chapter  Google Scholar 

  24. Stegailov, V., et al.: Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations. Int. J. High Perform. Comput. Appl. 33(3), 507–521 (2019). https://doi.org/10.1177/1094342019826667

    Article  Google Scholar 

  25. Wiśniewska, J., Sawerwain, M.: GPU: accelerated computation routines for quantum trajectories method. In: Kindratenko, V. (ed.) Numerical Computations with GPUs, pp. 299–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06548-9_14

    Chapter  Google Scholar 

  26. Habich, J., Zeiser, T., Hager, G., Wellein, G.: Performance analysis and optimization strategies for a D3Q19 lattice Boltzmann kernel on NVIDIA GPUs using CUDA. Adv. Eng. Softw. 42(5), 266–272 (2011). https://doi.org/10.1016/j.advengsoft.2010.10.007

    Article  MATH  Google Scholar 

  27. Dongarra J., Luszczek P.: TOP500. In: Padua D. (eds.) Encyclopedia of Parallel Computing. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-4_157

  28. Scott, R.: Computer simulation of liquids (1991)

    Google Scholar 

Download references

Acknowledgments

The study was carried out with a grant from the Russian Science Foundation (project no. 20-71-10127). This research was supported in part through computational resources of HPC facilities at HSE University and at JIHT RAS. The calculations were also performed on the hybrid supercomputer K60 (K100) installed in the Supercomputer Centre of Collective Usage of KIAM RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Kolotinskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolotinskii, D., Timofeev, A. (2022). Performance Analysis of GPU-Based Code for Complex Plasma Simulation. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science, vol 13708. Springer, Cham. https://doi.org/10.1007/978-3-031-22941-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22941-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22940-4

  • Online ISBN: 978-3-031-22941-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics