Skip to main content

Information Entropy Initialized Concrete Autoencoder for Optimal Sensor Placement and Reconstruction of Geophysical Fields

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13708))

Included in the following conference series:

Abstract

We propose a new approach to the optimal placement of sensors for the problem of reconstructing geophysical fields from sparse measurements. Our method consists of two stages. In the first stage, we estimate the variability of the physical field as a function of spatial coordinates by approximating its information entropy through the Conditional PixelCNN network. To calculate the entropy, a new ordering of a two-dimensional data array (spiral ordering) is proposed, which makes it possible to obtain the entropy of a physical field simultaneously for several spatial scales. In the second stage, the entropy of the physical field is used to initialize the distribution of optimal sensor locations. This distribution is further optimized with the Concrete Autoencoder architecture with the straight-through gradient estimator and adversarial loss to simultaneously minimize the number of sensors and maximize reconstruction accuracy. Our method scales linearly with data size, unlike commonly used Principal Component Analysis. We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands. For these examples, we compute the reconstruction error of our method and a few baselines. We test our approach against two baselines (1) PCA with QR factorization and (2) climatology. We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaurkin, M.N., Ibrayev, R.A.: Multivariate EnOI-based data assimilation in the high resolution ocean model. J. Phys.: Conf. Ser. 1128(1), 012144 (2018). IOP Publishing

    Google Scholar 

  2. Nakai, K., et al.: Effect of objective function on data-driven greedy sparse sensor optimization. IEEE Access 9, 46731–46743 (2021)

    Article  Google Scholar 

  3. Saito, Y., et al.: Determinant-based fast greedy sensor selection algorithm. IEEE Access 9, 68535–68551 (2021)

    Article  Google Scholar 

  4. Wolf, P., Moura, S., Krstic, M.: On optimizing sensor placement for spatio-temporal temperature estimation in large battery packs. In: Proceedings of the IEEE Conference on Decision Control (CDC), pp. 973–978 (2012). https://doi.org/10.1109/CDC.2012.6426191

  5. Kumar, P., Sayed, Y.M.E., Semaan, R.: Optimized sensor placement using stochastic estimation for a flow over a 2D airfoil with Coanda blowing. In: Proceedings of the 7th AIAA Flow Control Conference, Atlanta, GA, USA (2014)

    Google Scholar 

  6. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9(2), 235–284 (2008)

    MATH  Google Scholar 

  7. Nguyen, L.V., Guoqiang, H., Spanos, C.J.: Efficient sensor deployments for spatio-temporal environmental monitoring. IEEE Trans. Syst. Man. Cybern.: Syst. 50(12), 5306–5316 (2018)

    Article  Google Scholar 

  8. Nagata, T., et al.: Data-driven sparse sensor selection based on A-optimal design of experiment with ADMM. IEEE Sens. J. 21(13), 15248–15257 (2021)

    Article  Google Scholar 

  9. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. arXiv preprint arXiv:1611.01144 (2016)

  10. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  11. Wang, Z.-K., et al.: Optimization and assessment of blade tip timing probe layout with concrete autoencoder and reconstruction error. Appl. Soft Comput. 119, 108590 (2022)

    Article  Google Scholar 

  12. Balın, M.F., Abid, A., Zou, J.: Concrete autoencoders: differentiable feature selection and reconstruction. In: International Conference on Machine Learning. PMLR (2019)

    Google Scholar 

  13. Huijben, I.A.M., Veeling, B.S., van Sloun, R.J.G.: Deep probabilistic subsampling for task-adaptive compressed sensing. In: International Conference on Learning Representations (2019)

    Google Scholar 

  14. Singh, D., et al.: FsNet: feature selection network on high-dimensional biological data. arXiv preprint arXiv:2001.08322 (2020)

  15. Van den Oord, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  16. Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning. PMLR (2016)

    Google Scholar 

  17. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Kalnitskii, L., Kaurkin, M., Ushakov, K., Ibrayev, R.: Supercomputer implementation of a high resolution coupled ice-ocean model for forecasting the state of the Arctic Ocean. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331, pp. 332–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_29

    Chapter  Google Scholar 

  20. Zacharov, I., et al.: “Zhores” - petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology. Open Eng. 9(1), 512–520 (2019). https://doi.org/10.1515/eng-2019-0059

  21. Bryan, K.: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 135(2), 154–169 (1997). https://doi.org/10.1016/0021-9991(69)90004-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Lebedev, V.I.: Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I. USSR Comput. Math. Math. Phys. 4(3), 69–92 (1964). https://doi.org/10.1016/0041-5553(64)90240-X

    Article  MATH  Google Scholar 

  23. Lebedev, V.I.: Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. II. USSR Comput. Math. Math. Phys. 4(4), 36–50 (1964). https://doi.org/10.1016/0041-5553(64)90003-5

    Article  Google Scholar 

  24. Mesinger, F., Arakawa, A.: Numerical Methods Used in Atmospheric Models. GARP Publ. Series # 17, vol. I, p. 64 pp. WMO/ISCU Joint Org. Committee, Geneva (1976)

    Google Scholar 

  25. Ushakov, K.V., Ibrayev, R.A.: Assessment of mean world ocean meridional heat transport characteristics by a high-resolution model. Russ. J. Earth. Sci. 18, ES1004 (2018). https://doi.org/10.2205/2018ES000616

    Article  Google Scholar 

  26. Hunke, E.C., Lipscomb, W.H., Turner, A.K., Jeffery, N., Elliott, S.: CICE: the Los Alamos Sea Ice Model documentation and software user’s manual, version 5.1. Technical report LA-CC-06-012. Los Alamos National Laboratory, Los Alamos, NM (2015). http://www.ccpo.odu.edu/klinck/Reprints/PDF/cicedoc2015.pdf

  27. Killworth, P.D., et al.: The development of a free-surface Bryan-Cox-Semtner ocean model. J. Phys. Oceanogr. 21(9), 1333–1348 (1991)

    Article  Google Scholar 

  28. Griffies, S.M., Hallberg, R.W.: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Weather Rev. 128, 2935–2946 (2000). https://doi.org/10.1175/1520-0493(2000)1282935:BFWASL2.0.CO;2

    Article  Google Scholar 

  29. Munk, W.H., Anderson, E.R.: Note on the theory of the thermocline. J. Mar. Res. 7, 276–295 (1948)

    Google Scholar 

  30. Griffies, S.M., et al.: Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26(1–2), 1–46 (2009). https://doi.org/10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  31. Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020)

    Article  Google Scholar 

  32. Manohar, K., et al.: Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 38(3), 63–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ryan, A.G., et al.: GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison. J. Oper. Oceanogr. 8(sup1), s98–s111 (2015). https://doi.org/10.1080/1755876X.2015.1022330

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by the state assignment of IO RAS, theme FMWE-2021-0003 (analysis of the temperature and salinity fields near the Svalbard group of islands, final experiments and assessment of reconstruction accuracy for the considered optimal sensor placement methods), and by the BASIS Foundation, Grant No. 19-1-1-48-1 (development of the information entropy approximation scheme and initial experiments with the concrete autoencoder by A. L.). The authors acknowledge the use of Zhores HPC [20] for obtaining the results presented in this paper. The ocean model dataset was obtained using supercomputer resources of JSCC RAS and INM RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Turko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turko, N., Lobashev, A., Ushakov, K., Kaurkin, M., Ibrayev, R. (2022). Information Entropy Initialized Concrete Autoencoder for Optimal Sensor Placement and Reconstruction of Geophysical Fields. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science, vol 13708. Springer, Cham. https://doi.org/10.1007/978-3-031-22941-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22941-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22940-4

  • Online ISBN: 978-3-031-22941-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics