Skip to main content

Plasmoids

  • Chapter
  • First Online:
Fusion's Promise

Summary

Electromagnetic effects in plasmas can create various structures, such as smoke rings, sheets, and strands, often referred to generically as plasmoids. For fusion devices, plasmoids typically have the advantage of being hotter, denser, and more easily moved around. Unfortunately, plasmoid structures are inherently unstable, so every fusion research team that is pursuing this technology is also devising some method to stabilize these structures. This chapter explores strategies that fusioneers have developed to create, control, measure, compress, and stabilize different kinds of plasmoids, with the goal of establishing conditions in which the material inside the plasmoid undergoes fusion as well as eventually building reactors based on this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb, A.C.; Dobbie, C.B.; Griem, H.R. (1 July 1959). “Field mixing and associated neutron production in a plasma.” Physical Review Letters. 3 (1): 5–7.

    Google Scholar 

  2. Tuszewski, M. “Field Reversed Configurations.” Nuclear Fusion 28.11 (1988): 2033–2092.

    Article  Google Scholar 

  3. “Evidence of a hot dense plasma in a theta pinch” Green, 1960

    Google Scholar 

  4. Dolan, Thomas. Magnetic Fusion Technology. Vol. 2. New York City: Springer, 2012. Print.

    Google Scholar 

  5. “Pinch, Theta-Pinch.” EUROfusion. N.P., n.d. Web. 16 May 2017. https://www.eurofusion.org/glossary/pinch-theta-pinch/

  6. Slough, John. “MOQUI Simulation of Two FRCs Colliding.” YouTube. MSNW LLC, 27 Mar. 2013. Web. 11 Jan. 2015.

    Google Scholar 

  7. Jones, Ieuan R. “A Review of Rotating Magnetic Field Current Drive and the Operation of the Rotamak as a Field-reversed Configuration (Rotamak-FRC) and a Spherical Tokamak (Rotamak-ST).” Physics of Plasmas 6.5 (1999): 1950–1957. Web. 27 Apr. 2017

    Google Scholar 

  8. Dr. Sam Cohen, Private Conversation, in person, 4-19-2017.

    Google Scholar 

  9. Cohen, Samuel A., and Alan H. Glasser. “Ion Heating in the Field-reversed Configuration (FRC) by Rotating Magnetic Fields (RMF) near Cyclotron Resonance.” Physical Review Letters 85.24 (2000): n. pag. Web. 27 Apr. 2017. http://mnx.pppl.gov/docs/cohen2000prl.pdf

  10. I. R. Jones “The Rotamak concept“ Technical Report No. FUPH-R-151, Flinders University (1979)

    Google Scholar 

  11. Brennan, M.H., A.D. Cheetham, and I.R. Jones. “Observation of the Nonlinear Interaction of Torsional Hydromagnetic Waves.” Physics Letters A 46.7 (1974): 437–438. Web. 27 Apr. 2017.

    Google Scholar 

  12. Hoffman, A.L, H.Y Guo, R.D Milroy, and Z.A Pietrzyk. “Resistivity Scaling of Rotating Magnetic Field Current Drive in FRCs.” Nuclear Fusion 43.10 (2003): 1091–1100. Web. 27 Apr. 2017. http://iopscience.iop.org/article/10.1088/0029-5515/43/10/010

  13. “Discussions with Dr. Matthew Lilley.” Online interview. 09 Oct. 2016.

    Google Scholar 

  14. “Dr. Alex Klien, Full Interview, The Fusion Podcast.” Interview by Alex Klien and Matthew Moynihan. The Fusion Podcast. N.p., 9 Sept. 2016. Web. 27 Apr. 2017.

    Google Scholar 

  15. Jones I R 1979 “The Rotamak Concept” Flinders University Report FUPH-R-151 (February 1979) NTISPB85-133858.

    Google Scholar 

  16. “Lorentz Force.” Wikipedia. Wikimedia Foundation, 26 Apr. 2017. Web. 27 Apr. 2017.

    Google Scholar 

  17. Alfven, Hannes, and Carl-Gunne Falthammar. Cosmical Electrodynamics: Fundamental Principles. Oxford: Clarendon, 1963. Print.

    Google Scholar 

  18. Fitzpatrick, Richard. “Notes on Magnetized Plasmas - Electron and Ion Gyroradius.” Magnetized Plasmas. N.p., 2008. Web. 27 Apr. 2017.

    Google Scholar 

  19. Hugrass, William. The field induced in a conduction sphere places in a steady field and a perpendicular oscillatory magnetic field. Dissertation. The Flinders U of South Australia, 1981. Adelaide: school of physical sciences, 1981. Print.

    Google Scholar 

  20. “Obituaries: Tributes to Three of Our Finest.” The Advertiser, Adelaide, 2 Dec. 2011. Web. 27 Apr. 2017. http://www.adelaidenow.com.au/ipad/obituaries-tributes-to-three-of-our-finest/newsstory/fab839a509ac0f5aaede141aafe3b533

  21. Cohen, Sam. “Sam Cohen Homepage.” PPPL Staff Homepages. Princeton Plasma Physics Laboratory, Web. 27 Apr. 2017. http://pst.pppl.gov/person/sam_cohen.htm

  22. Hoffman, Alan. “FRC on the Path to Fusion Energy (Moderate Density Steady-State Approach)” http://fire.pppl.gov/fpa06_hoffman_frc.pdf. The 2006 Fusion Power Associates Meeting. Washington DC. 27 September 2006. Lecture.

  23. “Alan Hoffman.” UW A&A – Faculty – A. Hoffman. N.p., n.d. Web. 27 Apr. 2017. http://web.archive.org/web/20150618214816/http://www.aa.washington.edu:80/faculty/hoffman/

  24. Hoffman, Alan L. “The TCS program – Translation, Confinement, and Sustainment of Frcs – Final Report.” The Redmond Plasma Physics Laboratory Web. 27 Apr. 2017. https://web.archive.org/web/20111206141151/http://depts.washington.edu/rppl/papers/TCSrpt03.pdf

  25. “The Redmond Plasma Physics Laboratory.” Presentations and Meetings. The Wayback Machine, 2011. Web. 27 Apr. 2017. https://web.archive.org/web/20150618095027/http://depts.washington.edu:80/rppl/presentations/index.html

  26. Slough, John. “Home – Basic.” Helion Energy. N.p., n.d. Web. 27 Apr. 2017. http://www.helionenergy.com/

  27. “Rotamak Room.” Solar Observatory. Texas A&M University, Web. 27 Apr. 2017. http://www.pvamu.edu/pvso/research-and-education-activities/fusion-plasma-research-project/Rotamakroom/

  28. “Princeton Field-reversed Configuration Experiment.” Wikipedia. Wikimedia Foundation, 22 Mar. 2017. Web. 27 Apr. 2017. https://en.wikipedia.org/wiki/Princeton_field-reversed_configuration_experiment

  29. Cohen, S. A., B. Berlinger, C. Brunkhorst, A. Brooks, N. Ferraro, D. P. Lundberg, A. Roach, and A. H. Glasser. “Formation of Collisionless High-B Plasmas by Odd-Parity Rotating Magnetic Fields.” Physical Review Letters 98.14 (2007): n. pag. Web. 27 Apr. 2017

    Google Scholar 

  30. Green, T. S. “Evidence for the Containment of a Hot, Dense Plasma in a Theta Pinch.” Physical Review Letters 5.7 (1960): 297–300. Web.

    Google Scholar 

  31. Tuszewski, Micheal. “A New High Performance Field Reversed Configuration Operating Regime in the C-2 Device.” Physics of Plasmas 19 (2012).

    Google Scholar 

  32. Pietrzyk, Z.A., G.C. Vlases, R.D. Brooks, K.D. Hahn, and R. Raman. “Initial Results from the Coaxial Slow Source FRC Device.” Nuclear Fusion 27.9 (1987): 1478–1488. Web.

    Article  Google Scholar 

  33. Goldenbaum, G., J. Irby, Y. Chong, and G. Hart. “Formation of a Spheromak Plasma Configuration.” Physical Review Letters 44.6 (1980): 393–96. Web.

    Google Scholar 

  34. Nogi, Yasuyuki, Hiroaki Ogura, Yukio Osanai, Katsunori Saito, Shouichi Shiina, and Hisamitsu Yoshimura. “Spheromak Formation by Theta Pinch.” Journal of the Physics Society Japan 49.2 (1980): 710–716. Web.

    Google Scholar 

  35. Jones, W. B. “Generation and Motion of Plasmoids in a Magnetic Field with Mirrors.” Physics of Fluids 11.7 (1968): 1550. Web

    Google Scholar 

  36. Gerhardt, S. P., E. Belova, M. Inomoto, M. Yamada, H. Ji, Y. Ren, and A. Kuritsyn. “Equilibrium and Stability Studies of Oblate Field-reversed Configurations in the Magnetic Reconnection Experiment.” Physics of Plasmas 13.11 (2006): 112508. Web.

    Article  Google Scholar 

  37. Slough, John, and David Kirtley. “Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket.” NIAC Spring Symposium (2012): Pasadena, CA. Web. 27 Mar. 2012.

    Google Scholar 

  38. Steinhauer, Loren C. “Review of Field-reversed Configurations.” Physics of Plasmas 18.7 (2011): 070501. Web.

    Google Scholar 

  39. Pert, GJ. “Comments on Comparison of a Two-Dimensional Snowplow Model with Experiment.” Physics of Fluids 12.7 (1969): 1528. 1529. Web. 29 Mar. 2015.

    Google Scholar 

  40. “Chapter 2: The Pinch Effect.” PhD Theses (n.d.): 13–29. Welcome to Pakistan Research Repository. Pakistan Research Repository. Web. 29 Mar. 2015. Page on hec.gov.pk

  41. Slutz, Stephen, and Roger Vesey. “High-Gain Magnetized Inertial Fusion.” Physical Review Letters 108.2 (2012): n. pag. Web. 29 Mar. 2015. High-Gain Magnetized Inertial Fusion

    Google Scholar 

  42. Blevin, Henry, and P. C. Thonemann. “Plasma Confinement Using An Alternating Magnetic Field.” Nuclear Fusion (1962): 55–60.

    Google Scholar 

  43. The Editors of Encyclopedia Britannica. “Lorentz Force.” Encyclopedia Britannica. Encyclopedia Britannica, Inc., Web. 07 May 2017.

    Google Scholar 

  44. Spitzer, Lyman. Physics of Fully Ionized Gases. Mineola, NY: Dover, 2006. Print.

    Google Scholar 

  45. “Gyroradius.” Wikipedia. Wikimedia Foundation, 14 Nov. 2016. Web. 07 May 2017.

    Google Scholar 

  46. Cohen, Sam, and B. Berlinger. “Long-pulse Opera.on of the PFRC-2 Device.” The Joint US-Japan Compact Torus. Wisconsin, Madison. 22 Aug. 2016. Lecture.

    Google Scholar 

  47. Victor, B. S., T. R. Jarboe, A. C. Hossack, D. A. Ennis, B. A. Nelson, R. J. Smith, C. Akcay, C. J. Hansen, G. J. Marklin, N. K. Hicks, and J. S. Wrobel. “Evidence for Separatrix Formation and Sustainment with Steady Inductive Helicity Injection.” Physical Review Letters 107.16 (2011).

    Article  Google Scholar 

  48. “Interview with Derek Sutherland” The Fusion Podcast, August 2016

    Google Scholar 

  49. 2017 NRL PLASMA FORMULARY. J.D. Huba. Beam Physics Branch. Plasma Physics Division. Naval Research Laboratory. Washington, DC 20375.

    Google Scholar 

  50. Binderbauer, Michl. “A High Performance Field-reversed Configuration: Physics of Plasmas: Vol 22, No 5.” Physics of Plasmas. Tri Alpha Energy, May 2015.

    Google Scholar 

  51. “Home.” Ural Motorcycles – Seattle Manufacturing Offices. N.p., n.d. Web. 16 May 2017.

    Google Scholar 

  52. Martin, Richard. “Go Inside Tri Alpha, A Startup Pursuing the Ideal Power Source.” MIT Technology Review (2016): n. pag. Web. 20 May 2016. https://www.technologyreview.com/s/601482/go-insidetrialpha- a-startup-pursuing-the-ideal-power-source/

  53. “Stellarator.” Wikipedia. Wikimedia Foundation, 12 May 2017. Web. 16 May 2017.

    Google Scholar 

  54. Burton, Milton, and Myron Luntz. “Radiation.” Encyclopedia Britannica. Encyclopedia Britannica, Inc., 14 Apr. 2017. Web. 16 May 2017.

    Google Scholar 

  55. “What’s the Big Idea?” VOL. XXXII, NO. 2, WINTER 2016, Ray Rothrock.

    Google Scholar 

  56. “Helicity Drive: A Novel Scalable Fusion Concept for Deep Space Propulsion”, 2020, You, Setthivoine, AIAA Propulsion and Energy Conference.

    Google Scholar 

  57. Jarboe, T. R., et al. “Imposed-dynamo current drive.” Nuclear Fusion 52.8 (2012): 083017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moynihan, M., Bortz, A.B. (2023). Plasmoids. In: Fusion's Promise. Springer, Cham. https://doi.org/10.1007/978-3-031-22906-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22906-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22905-3

  • Online ISBN: 978-3-031-22906-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics