Skip to main content

Ecohydrological Gradient in Neotropical Montane Ecosystems: From Tropical Montane Forests to Glacier

  • Chapter
  • First Online:
Neotropical Gradients and Their Analysis

Abstract

Neotropical montane ecosystems are diverse and complex, ranging from glaciers, on top of highest mountains (above 4500 masl), with no vegetation at all, to páramo ecosystems with short vegetation (between 3000 and 4500 masl), mostly herbaceous and shrubs, and to montane forest with larger tree size and abundant epiphytes hanging from tree branches and attached to tree trunks (Tobón et al. 2010). Climate conditions affect these ecosystems in a different manner, which determines their soils (e.g. weathering, physical and chemical composition), vegetation and functioning, notably, the ecohydrological one (Tobón 2023a; Aparecido et al. 2018; Beck et al. 2009; Kottke et al. 2008; Bruijnzeel and Lu 2001). Although Neotropical montane ecosystems are well known for their specific climate conditions, only until the last decades they are recognized by their importance as ecosystem service provider, mainly of fresh water and the large carbon storage in soils (Tobón 2023b; Bruijnzeel and Lu 2001). Albeit several hydrological and climate studies have been carried out in Neotropical regions (Tobón 2023a; Aparecido et al. 2018; Beck et al. 2008; Bendix et al. 2008; Wilcke et al. 2008a, b), they concentrated on a specific individual ecosystem, but almost non comprised all ecosystems in the gradient of tropical montane forest to glaciers, where this gradient is characterized by changes on vegetation and environmental variables connected to the altitudinal decrease in precipitation and temperature, and the increase on air humidity and fog frequency. This environmental stratification may control plant diversity, ecosystem dynamics and functioning, with their partial contribution to water supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert T, Klein A, Kincaid JL, Huggel C, Racoviteanu AE, Arnaud Y, Ceballos JL (2014) Remote sensing of rapidly diminishing tropical glaciers in the northern Andes. In: Global land ice measurements from space. Springer, Berlin, pp 609–638

    Google Scholar 

  • Aparecido LMT, Teodoro GS, Mosquera G, Brum M, Barros FDV, Pompeu PV, Mulligan M (2018) Ecohydrological drivers of Neotropical vegetation in montane ecosystems. Ecohydrology 11(3):e1932

    Google Scholar 

  • Apaza-Quevedo A, Lippok D, Hensen I, Schleuning M, Both S (2015) Elevation, topography, and edge effects drive functional composition of woody plant species in tropical montane forests. Biotropica 47(4):449–458

    Google Scholar 

  • Armstrong RL, Brun E (2008) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Baker DB, Richards RP, Loftus TT, Kramer JW (2004) A new flashiness index: characteristics and applications to midwestern rivers and streams 1. JAWRA J Am Water Resour Assoc 40(2):503–522

    Google Scholar 

  • Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh KI, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150

    Google Scholar 

  • Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (2008) Gradients in a tropical mountain ecosystem of Ecuador, vol 198. Springer, Berlin

    Google Scholar 

  • Bendix J, Fabian P, Rollenbeck R (2004). Gradients of fog and rain in a tropical montane cloud forest of southern Ecuador and its chemical composition. In: Paper presented at the proceedings of the 3rd international conference on fog, fog collection and dew

    Google Scholar 

  • Bendix J, Rollenbeck R, Fabian P, Emck P, Richter M, Beck E (2008) Climate variability. In: Gradients in a tropical mountain ecosystem of. Springer, Berlin, pp 281–290

    Google Scholar 

  • Berrones G, Crespo P, Wilcox BP, Tobón C, Célleri R (2021) Assessment of fog gauges and their effectiveness in quantifying fog in the Andean páramo. Ecohydrology 14(6):e2300

    Google Scholar 

  • Berrones G, Crespo P, Ochoa-Sánchez A, Wilcox BP, Célleri R (2022) Importance of fog and cloud water contributions to soil moisture in the Andean Páramo. Hydrology 9(4):54

    Google Scholar 

  • Bittencourt PR, Barros FDV, Eller CB, Müller CS, Oliveira RS (2019) The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agric For Meteorol 265:359–369

    Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312(5781):1755–1756

    CAS  PubMed  Google Scholar 

  • Braun MH, Malz P, Sommer C, Farías-Barahona D, Sauter T, Casassa G, Seehaus TC (2019) Constraining glacier elevation and mass changes in South America. Nat Clim Chang 9(2):130–136

    Google Scholar 

  • Bruijnzeel LA, Lu J (2001) Hydrology of tropical montane cloud forests: a reassessment. Land Use Water Resour Res 1(1732-2016-140258):1.1–1.18

    Google Scholar 

  • Bruijnzeel L, Veneklaas EJ (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79(1):3–9

    Google Scholar 

  • Bruijnzeel L, Kappelle M, Mulligan M, Scatena FN (2010) Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Tropical montane cloud forests science for conservation and management

    Google Scholar 

  • Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20(1):19–33

    Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees?. Agriculture, Ecosystems & Environment, Volume 104, Issue 1, Pages 185–228, ISSN 0167-8809, https://doi.org/10.1016/j.agee.2004.01.015.

  • Buytaert W, Moulds S, Acosta L, De Bievre B, Olmos C, Villacis M, Verbist KM (2017) Glacial melt content of water use in the tropical Andes. Environ Res Lett 12(11):114014

    Google Scholar 

  • Cárdenas MF, Tobón C, Buytaert W (2017) Contribution of occult precipitation to the water balance of páramo ecosystems in the Colombian Andes. Hydrol Process 31(24):4440–4449

    Google Scholar 

  • Carey M, Molden OC, Rasmussen MB, Jackson M, Nolin AW, Mark BG (2017) Impacts of glacier recession and declining meltwater on mountain societies. Ann Am Assoc Geogr 107(2):350–359

    Google Scholar 

  • Cavalcanti IFA, Shimizu MH (2012) Climate fields over South America and variability of SACZ and PSA in HadGEM2-ES, 01, 132

    Google Scholar 

  • Cavelier J (1996) Environmental factors and ecophysiological processes along altitudinal gradients in wet tropical mountains. In: Tropical forest plant ecophysiology. Springer, pp 399–439

    Google Scholar 

  • Cavelier J, Solis D, Jaramillo MA (1996) Fog interception in montane forests across the Central Cordillera of Panama. J Trop Ecol 12(3):357–369

    Google Scholar 

  • Ceballos JL, Euscátegui C, Ramírez J, Cañon M, Huggel C, Haeberli W, Machguth H (2006) Fast shrinkage of tropical glaciers in Colombia. Ann Glaciol 43:194–201

    Google Scholar 

  • Célleri R, Feyen J (2009) The hydrology of tropical Andean ecosystems: importance, knowledge status, and perspectives. Mt Res Dev 29(4):350–355

    Google Scholar 

  • Cepeda Arias, E., Cañon Barriga J., & Salazar, J.F. (2022) Changes of streamflow regulation in an Andean watershed with shrinking glaciers: implications for water security, Hydrological Sciences Journal, 67:11, 1755-1770, https://doi.org/10.1080/02626667.2022.2105650

  • Chang M (2013) Forest Hydrology: An Introduction to Water and Forests, Third Edition (3rd ed.). CRC Press. https://doi.org/10.1201/b13614

  • Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change 11(1):179–187

    Google Scholar 

  • Crausbay SD, Martin PH (2016) Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests. J Trop Ecol 32(5):384–403

    Google Scholar 

  • Crespo PJ, Feyen J, Buytaert W, Bücker A, Breuer L, Frede HG, Ramírez M (2011) Identifying controls of the rainfall–runoff response of small catchments in the tropical Andes (Ecuador). J Hydrol 407(1–4):164–174

    Google Scholar 

  • da Rocha NS, Veettil BK, Grondona A, Rolim S (2019) The influence of ENSO and PDO on tropical Andean glaciers and their impact on the hydrology of the Amazon Basin. Singap J Trop Geogr 40(3):346–360

    Google Scholar 

  • de Vries M, Carchipulla-Morales D, Wickert AD, Minaya VG (2022) Glacier thickness and ice volume of the Northern Andes. Sci Data 9(1):1–16

    Google Scholar 

  • Di Piazza A, Conti FL, Noto LV, Viola F, La Loggia G (2011) Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int J Appl Earth Obs Geoinf 13(3):396–408

    Google Scholar 

  • Domínguez CG, García Vera MF, Chaumont C, Tournebize J, Villacís M, d’Ozouville N, Violette S (2017) Quantification of cloud water interception in the canopy vegetation from fog gauge measurements. Hydrol Process 31(18):3191–3205

    Google Scholar 

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci 12(10):802–808

    CAS  Google Scholar 

  • Escanilla-Minchel R, Alcayaga H, Soto-Alvarez M, Kinnard C, Urrutia R (2020) Evaluation of the impact of climate change on runoff generation in an andean glacier watershed. Water 12(12):3547

    CAS  Google Scholar 

  • Frans C, Istanbulluoglu E, Lettenmaier DP, Fountain AG, Riedel J (2018) Glacier recession and the response of summer streamflow in the Pacific Northwest United States, 1960–2099. Water Resour Res 54(9):6202–6225

    Google Scholar 

  • Fujita K, Thompson LG, Ageta Y, Yasunari T, Kajikawa Y, Sakai A, Takeuchi N (2006) Thirty-year history of glacier melting in the Nepal Himalayas. J Geophys Res: Atmos 111(D3)

    Google Scholar 

  • García-Santos G, Bruijnzeel L (2011) Rainfall, fog and throughfall dynamics in a subtropical ridge top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain). Hydrol Process 25(3):411–417

    Google Scholar 

  • Gascoin S, Kinnard C, Ponce R, Lhermitte S, MacDonell S, Rabatel A (2011) Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 5(4):1099–1113

    Google Scholar 

  • Gomez-Peralta D, Oberbauer SF, McClain ME, Philippi TE (2008) Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. For Ecol Manag 255(3–4):1315–1325

    Google Scholar 

  • Guan M, Sillanpää N, Koivusalo H (2016) Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrol Process 30(4):543–557

    Google Scholar 

  • Gutiérrez M, Zapata P, Ruiz D (2006) Understanding the signals of climate change and climate variability on the water supply of high mountain watersheds. In: Environmental engineering program, school of engineering, Antioquia, Colombia

    Google Scholar 

  • Holder CD (2003) Fog precipitation in the Sierra de las Minas biosphere reserve, Guatemala. Hydrol Process 17(10):2001–2010

    Google Scholar 

  • Holwerda F, Bruijnzeel L, Muñoz-Villers L, Equihua M, Asbjornsen H (2010) Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. J Hydrol 384(1–2):84–96

    Google Scholar 

  • IDEAM (2014) Estudio Nacional del Agua

    Google Scholar 

  • IDEAM (Instituto de Hidrología, Meteorlogia y Estudios Ambientales). (2012). Glaciares de Colombia, más quemontañas con hielo. Bogotá, DC, 344.

    Google Scholar 

  • IDEAM. (2016). Impacto del fenómeno “El Niño” 2015-2016 en los nevados y en la alta montaña en Colombia. Obtenido de Instituto de Hidrología Meteorología y Estudios Ambientales: http://www.ideam.gov.co/documents/11769/132669/Impacto+de+El+Ni%C3%B1o+en+la+alta+monta%C3%B1a+colombiana.pdf/dd41d158-0944-41d5-917e44fdb524e8ea

    Google Scholar 

  • Johansen KS, Alfthan B, Baker E, Hesping M, Schoolmeester T, Verbist K (2018) The Andean glacier and water atlas: the impact of glacier retreat on water resources. UNESCO Publishing, Paris

    Google Scholar 

  • Kaser G, Juen I, Georges C, Gómez J, Tamayo W (2003) The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J Hydrol 282(1–4):130–144

    Google Scholar 

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci 107(47):20223–20227

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ramírez SM, Sáenz L, Mayer A, Muñoz-Villers LE, Asbjornsen H, Berry ZC, Gómez-Aguilar LR (2020) Land use change effects on catchment streamflow response in a humid tropical montane cloud forest region, Central Veracruz, Mexico. Hydrol Process 34(16):3555–3570

    Google Scholar 

  • Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modelling. In: Paper presented at the institute of engineers Australia national conference

    Google Scholar 

  • Mark BG, French A, Baraer M, Carey M, Bury J, Young KR (2017) Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Change 159:61–76

    Google Scholar 

  • Martin PH, Sherman RE, Fahey TJ (2007) Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. J Biogeogr 34(10):1792–1806

    Google Scholar 

  • Marulanda Aguirre A, Fonseca Tobasura OA, Vélez Upegui JJ, Arboleda OD (2016) Hydrological study of the potential effects of the melting of Nevado del Ruiz glacier on urban growth zones in Manizales, Colombia. Hydrol Sci J 61(12):2179–2192

    Google Scholar 

  • Morán-Tejeda E, Ceballos JL, Peña K, Lorenzo-Lacruz J, López-Moreno JI (2018) Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrol Earth Syst Sci 22(10):5445–5461

    Google Scholar 

  • Ochoa-Sánchez A, Crespo P, Célleri R (2018) Quantification of rainfall interception in the high Andean tussock grasslands. Ecohydrology 11(3):e1946

    Google Scholar 

  • Penna D, van Meerveld HJ, Zuecco G, Dalla Fontana G, Borga M (2016) Hydrological response of an Alpine catchment to rainfall and snowmelt events. J Hydrol 537:382–397

    Google Scholar 

  • Peyre G, Balslev H, Martí D, Sklenář P, Ramsay P, Lozano P, Font X (2015) VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia 45(1–2):195–201

    Google Scholar 

  • Peyre GP, Bottin M, Sanchez A (2022) Flora y vegetación de paramo. In: Tobón C (ed) Los Páramos de Colombia. Características biofísicas, Ecohidrología y Cambio climático. Universidad Nacional de Colombia, Editorial UN, Bogotá, pp 143–178

    Google Scholar 

  • Poveda G, Pineda K (2009) Reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade? Adv Geosci 22:107–116

    Google Scholar 

  • Poveda G, Alvarez DM, Rueda OA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36(11):2233–2249

    Google Scholar 

  • Prada CM, Stevenson PR (2016) Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guacharos National Park, Huila, Colombia). Biotropica 48(5):568–576

    Google Scholar 

  • Pryet A, Dominguez C, Tomai PF, Chaumont C, d’Ozouville N, Villacís M (2012) Quantification of cloud water interception along the windward slope of Santa Cruz Island, Galapagos (Ecuador). Agric For Meteorol 161:94–106

    Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Huggel C (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7(1):81–102

    Google Scholar 

  • Rabatel A, Ceballos JL, Micheletti N, Jordan E, Braitmeier M, González J, Zemp M (2018) Toward an imminent extinction of Colombian glaciers? Geogr Ann Ser A 100(1):75–95

    Google Scholar 

  • Rabatel A, Sirguey P, Drolon V, Maisongrande P, Arnaud Y, Berthier E, Davaze L, Dedieu J-P, Dumont M (2017) Annual and Seasonal Glacier-Wide Surface Mass Balance Quantified from Changes in Glacier Surface State: A Review on Existing Methods Using Optical Satellite Imagery. Remote Sens. 9, 507. https://doi.org/10.3390/rs9050507

  • Ramírez BH, van der Ploeg M, Teuling AJ, Ganzeveld L, Leemans R (2017) Tropical montane cloud forests in the Orinoco river basin: the role of soil organic layers in water storage and release. Geoderma 298:14–26

    Google Scholar 

  • Rodríguez-Morales M, Acevedo-Novoa D, Machado D, Ablan M, Dugarte W, Dávila F (2019) Ecohydrology of the Venezuelan páramo: water balance of a high Andean watershed. Plant Ecol Divers 12(6):573–591

    Google Scholar 

  • Rollenbeck R, Bendix J, Fabian P (2011) Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador. Hydrol Process 25(3):344–352

    Google Scholar 

  • Ruiz D, Moreno HA, Gutiérrez ME, Zapata PA (2008) Changing climate and endangered high mountain ecosystems in Colombia. Sci Total Environ 398(1–3):122–132

    CAS  PubMed  Google Scholar 

  • Seehaus T, Malz P, Sommer C, Lippl S, Cochachin A, Braun M (2019) Changes of the tropical glaciers throughout Peru between 2000 and 2016–mass balance and area fluctuations. Cryosphere 13(10):2537–2556

    Google Scholar 

  • Sierra JP, Arias PA, Vieira SC (2015) Precipitation over northern South America and its seasonal variability as simulated by the CMIP5 models. Adv Meteorol 2015:1

    Google Scholar 

  • Singh VP, Eng D (2017) Handbook of applied hydrology. McGraw-Hill Education, New York

    Google Scholar 

  • Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat Clim Change 2(10):725–731

    Google Scholar 

  • Stoelzle M, Schuetz T, Weiler M, Stahl K, Tallaksen LM (2020) Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions. Hydrol Earth Syst Sci 24(2):849–867

    Google Scholar 

  • Tanaka N, Kuraji K, Tantasirin C, Takizawa H, Tangtham N, Suzuki M (2011) Relationships between rainfall, fog and throughfall at a hill evergreen forest site in northern Thailand. Hydrol Process 25(3):384–391

    Google Scholar 

  • Tandong Y, Pu J, Lu A, Wang Y, Yu W (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res 39(4):642–650

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Brecher HH (2011) Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann Glaciol 52(59):23–34

    CAS  Google Scholar 

  • Thompson LG, Davis ME, Mosley-Thompson E, Porter SE, Corrales GV, Shuman CA (2021) The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records. Glob Planet Change 203:103538

    Google Scholar 

  • Tobón C (2009) Los bosques andinos y el agua

    Google Scholar 

  • Tobón C, Bruijnzeel LA, Frumau, KFA, Calvo JC (2010) Changes in soil hydraulic properties and soil water status after conversion of tropical montane cloud forest to pasture in northern Costa Rica. In: LA Bruijnzeel, FN Scatena, LS Hamilton (editors), Tropical MontaneCloud Forests: Science for Conservation and Management. Cambridge University Press, Cambridge, UK. 765–778

    Google Scholar 

  • Tobón C (2022a) Los Páramos de Colombia. Características biofísicas, Ecohidrología y Cambio climático. Universidad Nacional de Colombia, Editorial UN, Bogotá. 629 p

    Google Scholar 

  • Tobón C (2022b) Los suelos de los páramos de Colombia y sus propiedades hidrofísicas. In: Tobón C (ed) Los Páramos de Colombia. Características biofísicas, Ecohidrología y Cambio climático. Universidad Nacional de Colombia, Editorial UN, Bogotá, pp 93–142

    Google Scholar 

  • Tobón C (2022c) Contribución de la niebla a la ecohidrología de los páramos en Colombia. In: Tobón C (ed) Los Páramos de Colombia. Características biofísicas, Ecohidrología y Cambio climático. Universidad Nacional de Colombia, Editorial UN, Bogotá, pp 308–348

    Google Scholar 

  • Tobón C (2022d) Interceptación de la precipitación por la vegetación de los páramos. In: Tobón C (ed) Los Páramos de Colombia. Características biofísicas, Ecohidrología y Cambio climático. Universidad Nacional de Colombia, Editorial UN, Bogotá, pp 272–307

    Google Scholar 

  • Tobón, C., & Bruijnzeel, L. A. (2021). Near-surface water fluxes and their controls in a sloping heterogeneously layered volcanic soil beneath a supra-wet tropical montane cloud forest (NW Costa Rica). Hydrological Processes, 35 (11), e14426. https://doi.org/10.1002/hyp.14426

    Google Scholar 

  • Tobón C, Castro E (2023) Funcionamiento ecohidrológico de los páramos en Colombia. In: Colombia UN d (ed) Los Páramos de Colombia, vol 1, Colombia

    Google Scholar 

  • Tobón C, Cárdenas MF (2023) El clima de los páramos en Colombia. En: Tobón, C. (Ed). Los Páramos de Colombia. Características biofísicas, Ecohidrología y Cambio climático. Universidad Nacional de Colombia, Editorial UN, Bogotá. Pag. 61–94.

    Google Scholar 

  • Tobón C, Gil G, Villegas CJ (2008) Aportes de la niebla al balance hídrico de los bosques alto-andinos

    Google Scholar 

  • UNGRD (2016) Fenómeno El Niño-Análisis Comparativo 1997–1998 y 2014–2016. Retrieved from Colombia

    Google Scholar 

  • Veettil BK, Kamp U (2019) Global disappearance of tropical mountain glaciers: observations, causes, and challenges. Geosciences 9(5):196

    Google Scholar 

  • Vergara W, Deeb A, Valencia A, Bradley R, Francou B, Zarzar A, Haeussling S (2007) Economic impacts of rapid glacier retreat in the Andes. Eos Trans AGU 88(25):261–264

    Google Scholar 

  • Villegas JC, Tobón C, Breshears DD (2008) Fog interception by non-vascular epiphytes in tropical montane cloud forests: dependencies on gauge type and meteorological conditions. Hydrol Process 22(14):2484–2492

    Google Scholar 

  • Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Timm OE (2018) Rapid decline of snow and ice in the tropical Andes–Impacts, uncertainties and challenges ahead. Earth-Sci Rev 176:195–213

    Google Scholar 

  • Wagnon P, Ribstein P, Kaser G, Berton P (1999) Energy balance and runoff seasonality of a Bolivian glacier. Glob Planet Change 22(1–4):49–58

    Google Scholar 

  • Wilcke W, Yasin S, Fleischbein K, Goller R, Boy J, Knuth J, . . . Zech W (2008) Water relations. In Gradients in a Tropical Mountain Ecosystem of Ecuador (pp. 193–201): Springer.

    Google Scholar 

  • Wilcke W, Yasin S, Fleischbein K, Goller R, Boy J, Knuth J, Zech W (2008a) Water relations. In: Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 193–201

    Google Scholar 

  • Wilcke W, Yasin S, Schmitt A, Valarezo C, Zech W (2008b) Soils along the altitudinal transect and in catchments. In: Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 75–85

    Google Scholar 

  • Wu F, Zhan J, Wang Z, Zhang Q (2015) Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Phys Chem Earth A/B/C 79:11–19

    Google Scholar 

  • Van Wyk de Vries M, Carchipulla-Morales D, Wickert AD, Minaya VG (2022) Glacier thickness and ice volume of the Northern Andes. Sci Data 9(1):1–16

    Google Scholar 

  • Xin J, Sun X, Liu L, Li H, Liu X, Li X, Xu Z (2021) Quantifying the contribution of climate and underlying surface changes to alpine runoff alterations associated with glacier melting. Hydrol Process 35(3):e14069

    Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Anderson B (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61(228):745–762

    Google Scholar 

  • Zhai Y, Wang C, Chen G, Wang C, Li X, Liu Y (2020) Field-based analysis of runoff generation processes in humid lowlands of the Taihu Basin, China. Water 12(4):1216

    Google Scholar 

  • Zhang M, Ren Q, Wei X, Wang J, Yang X, Jiang Z (2011) Climate change, glacier melting and streamflow in the Niyang River Basin, Southeast Tibet, China. Ecohydrology 4(2):288–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Luís Ceballos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tobón, C., Castro, E., Ceballos, J.L. (2023). Ecohydrological Gradient in Neotropical Montane Ecosystems: From Tropical Montane Forests to Glacier. In: Myster, R.W. (eds) Neotropical Gradients and Their Analysis. Springer, Cham. https://doi.org/10.1007/978-3-031-22848-3_9

Download citation

Publish with us

Policies and ethics