Skip to main content

Recyclability of Proton Exchange Membrane Electrolysers for Green Hydrogen Production

  • Conference paper
  • First Online:
New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1111 Accesses

Abstract

Renewed interest in green hydrogen energy due to its versatility and ability to decarbonise numerous economic sectors prompted research on the evaluation of sustainability of associated technologies. Proton Exchange Membrane (PEM) water electrolysis is a promising technology to produce hydrogen gas from water electrolysis using renewable power. However, PEM electrolysers use rare noble metals and other expensive materials. Furthermore, the availability and supply risks are additional concerns for the critical metals. Hence, this paper explores the review of the recycling process of end-of-life PEM electrolysers from the point of collection to the final material recovery and the potential reuse in the manufacturing process. Several studies have highlighted existing and novel recycling technologies for the different materials used in electrolyser components. Some of these methods include hydrometallurgy, pyrometallurgy, transient electrochemical dissolution, selective electrochemical dissolution, and acidic process. Overview of these processes and implication of recycling are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parliament of Australia (2022) ParlInfo - Climate Change Bill 2022. https://parlinfo.aph.gov.au/parlInfo/search/display/display.w3p;query%3DId%3A%22legislation%2Fbillhome%2Fr6885%22. Accessed 5 Aug 2022

  2. Bruce S, Temminghoff M, Hayward J, Schmidt E, Munnings C, Palfreyman D, Hartley P (2018) National hydrogen roadmap. CSIRO, Australia

    Google Scholar 

  3. Hughes, AE, Haque, N, Northey, SA, Giddey, S (2021) Platinum group metals: a review of resources, production and usage with a focus on catalysts. Resources 10(93)

    Google Scholar 

  4. Bessarabov D, Wang H, Li H, Zhao N (2016) PEM electrolysis for hydrogen production: principles and applications. CRC Press

    Book  Google Scholar 

  5. Mergel J, Fritz DL, Carmo M (2016) Stack technology for PEM electrolysis. Hydrogen science and engineering: materials, processes, systems and technology 2016. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 331–357

    Chapter  Google Scholar 

  6. Soriano RM, Rojas N, Nieto E, de Guadalupe González-Huerta R, Sandoval-Pineda JM (2021) Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyser: bolt torques and operation mode in pre-conditioning. Int J Hydrog Energy 46(51):25944–25953

    Article  Google Scholar 

  7. Thomas, D (2019) Large-scale PEM electrolysis: technology status and upscaling strategies, Brussels

    Google Scholar 

  8. Cummins (2021) HyLYZER® water electrolysers. https://mart.cummins.com/imagelibrary/data/assetfiles/0070328.pdf. Accessed 21 Dec 2021

  9. Bareiß K, de La Rua C, Möckl M, Hamacher T (2019) Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy system. Appl Energy 237:862–872

    Article  Google Scholar 

  10. Carmo M, Keeley GP, Holtz D, Grube T, Robinius M, Muller M, Stolten D. PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling. Int J Hydrog Energy 44(7):3450–3455

    Google Scholar 

  11. Sreeraj, P, Vedarajan, R, Rajalakshmi, Ramadesigan V (2021) Screening of recycled membrane with crystallinity as a fundamental property. Int J Hydrog Energy 46(24):13020–13028

    Google Scholar 

  12. Moghaddam JA, Parnian MA, Rowshanzamir S (2018) Preparation, characterisation, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications. Energy 161:699–709

    Article  Google Scholar 

  13. Wittstock R, Pehlken A, Wark M (2016) Challenges in automotive fuel cells recycling. Recycle 1(3):343–364

    Article  Google Scholar 

  14. Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337(6095):690–695

    Article  CAS  Google Scholar 

  15. HyTechCycling (2018) Existing end-of-life technologies applicable to FCH products

    Google Scholar 

  16. HyTechCycling (2018) New end-of-life technologies applicable to FCH products

    Google Scholar 

  17. Sandig-Predzymirska L, Barreiros TV, Thiere A, Weigelt D, Stelter VM, Charitos M (2021) Recycling strategy for the extraction of PGMs from spent PEM electrodes. In: EMC 2021. Freiberg

    Google Scholar 

  18. Shore, L (2012) Process for recycling components PEM fuel cell membrane electrode assembly. Washington, DC Patent 8,124,261

    Google Scholar 

  19. Grot S, Grot W (2007) Recycling of used perfluorosulfonic acid membranes. U.S.A Patent 7255798, 14 August 2007

    Google Scholar 

  20. Ohriner EK (2008) Processing of iridium and iridium alloys. Platin Met Rev 52(3):186

    Article  CAS  Google Scholar 

  21. Serpe A (2008) Green chemistry for precious metals recovery from WEEE. In: Waste electrical and electronic equipment recycling 2008. Woodhead Publishing, pp 271–332

    Google Scholar 

  22. Nguyen TH, Sonu TH, Lee MS (2016) Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy 164:71–77

    Google Scholar 

  23. Ueda T, Ichiishi S, Okuda A, Matsutani K (2016) Refining and recycling technologies for precious metals. Metal sustainability: global challenges, consequences and prospects 2016. John Wiley & Sons, West Sussex, pp 333–360

    Chapter  Google Scholar 

  24. Kedari S, Coll MT, Fortuny A, Goralska E, Sastre AM (2004) Liquid-liquid extraction of Ir, Ru, and Rh from chloride solutions and their separation using different commercially available solvent extraction reagents. Sep Sci Technol 40(9):1927–1946

    Article  Google Scholar 

  25. Jha MK, Lee JC, Kim MS, Jeong J, Kim BS, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy 133:23–32

    Article  CAS  Google Scholar 

  26. Duclos L, Svecova L, Laforest V, Mandil G, Thivel PX (2016) Process development and optimisation for platinum recovery from PEM fuel cell catalyst. Hydrometallurgy 160:79–89

    Article  CAS  Google Scholar 

  27. Hodnik N, Baldizzone C, Polymeros G, Geiger S, Grote JP, Cherevko S, Mingers A, Zeradjanin A, Mayrhofer KJ (2016) Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nat Commun 7(13164)

    Google Scholar 

  28. Zhao J, He X, Tian J, Wan C, Jiang C (2007) Reclaim/recycle of Pt/C catalysts for PEMFC. Energy Convers Manag 48(2):450–453

    Article  CAS  Google Scholar 

  29. Pavlisic A, Jovanovic P, Selih VS, Sala M, Hodnik N, Gaverscek M (2018) Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling. J Electrochem Soc 165(6):F3161–F3165

    Article  CAS  Google Scholar 

  30. Jovanovic P, Hodnik N, Ruiz-Zepeda F, Arcon I, Jozinovic B, Zorko M, Bele M, Sala M, Selih SV, Hocevar S, Gaberscek M (2017) Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry and x-ray absorption spectroscopy study. J Am Chem Soc 139(36):12837–12846

    Article  CAS  Google Scholar 

  31. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catalysis Today 262:170–180

    Google Scholar 

  32. Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6(8):2219–2223

    Article  CAS  Google Scholar 

  33. Kasian O, Grote JP, Geiger S, Cherevko S, Mayrhofer KJ (2018) The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on Iridium. Angew Chem Int Ed 57:2488–2491

    Article  CAS  Google Scholar 

  34. Sharma R, Nielsen KR, Lund PB, Simonsen SB, Grahl-Madsen L, Anderson SM (2019) Sustainable platinum recycling through electrochemical dissolution of platinum nanoparticles from fuel cell electrodes. ChemElectroChem 6(17):4471–4482

    Article  CAS  Google Scholar 

  35. Latsuzbaia R, Negro E, Koper GJM (2015) Environmentally friendly carbon-preserving recovery of noble metals from supported fuel cell catalysts. Chemsuschem 8(11):1926–2934

    Article  CAS  Google Scholar 

  36. Takeda O, Okabe TH (2019) Current status of titanium recycling and related technologies. JOM 71:1981–1990

    Article  CAS  Google Scholar 

  37. Wang D, Li Q, Xu M, Jiang G, Zhang Y, He G (2017) A novel approach to fabrication of three-dimensional porous titanium with controllable structure. Mater Sci Eng 71(1):1046–1051

    Article  CAS  Google Scholar 

  38. Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Collection and processing of recycled copper. In: Extractive metallurgy of copper (Fifth Edition), Elsevier, pp 373–387

    Google Scholar 

  39. Samuelsson C, Bjorkman B (2014) Copper recycling. In: Handbook of recycling: state-of-the-art for practitioners, analysts, and scientists 2014. Newnes, pp 85–94

    Google Scholar 

  40. Schlesinger ME (2006) Common impurities in molten aluminium. In: Aluminium recycling 2006. CRC Press, Boca Raton, pp 171–192

    Chapter  Google Scholar 

  41. Bjorkman B, Samuelsson C (2014) Recycling of steel. In: Handbook of recycling: state-of-the-art for practioners, analysts, and scientists 2014. Newnes, pp 65–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawshad Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haque, N., Giddey, S., Saha, S., Sernia, P. (2023). Recyclability of Proton Exchange Membrane Electrolysers for Green Hydrogen Production. In: Reddy, R.G., et al. New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22765-3_14

Download citation

Publish with us

Policies and ethics