Skip to main content

Guidelines for Mitigating Cybersickness During Training in VR Environment Using Head-Mounted Displays

  • Conference paper
  • First Online:
7th EAI International Conference on Management of Manufacturing Systems (MMS 2022)

Abstract

Based on this paper’s literature review, we provide guidelines for mitigating a common problem when using virtual reality (VR) applications – cybersickness. Cybersickness is a frequent side effect when immersed in the VR environment, especially when users participate in longer VR sessions (gaming, educational, training, or other kinds) using head-mounted display (HMD) systems. The root cause of cybersickness is the computer-generated environment, designed to envelop the user’s senses, which ultimately tricks the human sensory systems responsible for detecting a motion. The severity of the effect varies on an individual-to-individual basis. Still, in all cases, it causes discomfort to the VR users and negatively affects their quality of experience (QoE). Given that VR applications are increasingly being used for educational and training purposes in different industries, we will summarize previous studies’ experiences and results to derive a compact set of guidelines that could help the industry professionals mitigate the cybersickness risk and effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, Y., & Wang, S. H. (2011). Applying a 3D virtual learning environment to facilitate student's application ability-the case of marketing. Computers in Human Behavior, 27(1), 576–584. https://doi.org/10.1016/j.chb.2010.10.008

    Article  Google Scholar 

  2. Bertram, J., Moskaliuk, J., & Cress, U. (2015). Virtual training: Making reality work? Computers in Human Behavior, 43, 284–292. https://doi.org/10.1016/j.chb.2014.10.032

    Article  Google Scholar 

  3. Narciso, D., Melo, M., Rodrigues, S., Cunha, J. P., Vasconcelos-Raposo, J., & Bessa, M. E. (2022). Using heart rate variability for comparing the effectiveness of virtual vs real training environments for firefighters. IEEE Transactions on Visualization and Computer Graphics, early access. https://doi.org/10.1109/TVCG.2022.3156734

  4. Martirosov, S., Hořejší, P., Kopeček, P., Bureš, M., & Šimon, M. (2021). The effect of training in virtual reality on the precision of hand movements. Applied Sciences, 11(17), 1–19. https://doi.org/10.3390/app11178064

    Article  Google Scholar 

  5. Gao, Y., Chen, A., Chi, S., Zhang, G., & Hao, A. (2022). Analysis of emotional tendency and syntactic properties of VR game reviews. In Proceedings of the conference on virtual reality and 3D user interfaces abstracts and workshops (VRW) (pp. 648–649). IEEE. https://doi.org/10.1109/VRW55335.2022.00175

    Chapter  Google Scholar 

  6. LaViola, J. J. (2000). A discussion of cybersickness in virtual environment. SIGCHI Bulletin, ACM, 32(1), 47–56. https://doi.org/10.1145/333329.333344

    Article  Google Scholar 

  7. Chompoonuch, J., & Kazuhiko, H. (2011). Study on Parallax effect on simulator sickness in one-screen and three-screen immersive virtual environment. In Proceeding of the School of Information and Telecommunication Engineering (pp. 34–39). Tokai University.

    Google Scholar 

  8. Parsons, T. D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J. G., & Rizzo, A. A. (2004). Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia, 42, 555–562. https://doi.org/10.1016/j.neuropsychologia.2003.08.014

    Article  Google Scholar 

  9. Bruck, S. R., & Watters, P. A. (2009). Cybersickness and anxiety during simulated motion: Implications for VRET. Studies in Health Technology and Informatics, 144, 169–173. https://doi.org/10.3233/978-1-60750-017-9-169

    Article  Google Scholar 

  10. Koslucher, F., Haaland, E., & Stoffregen, T. A. (2016). Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. Experimental Brain Research, 234(1), 313–322. https://doi.org/10.1007/s00221-015-4462-y

    Article  Google Scholar 

  11. Stanney, K., Fidopiastis, C., & Foster, L. (2020). Virtual reality is sexist: But it does not have to be. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2020.00004

  12. Melo, M., Gonçalves, G., Narciso, D., & Bessa, M. (2021). Impact of different role types and gender on presence and cybersickness in immersive virtual reality setups. In Proceedings of the international conference on graphics and interaction (ICGI) (p. 1–8). IEEE. https://doi.org/10.1109/ICGI54032.2021.9655281

    Chapter  Google Scholar 

  13. Sunu, W., Titis, W., Hanung, A., Muhhamad, B., & Mumtaz, N. (2015). Quantifying visual attention and visually induced motion sickness during day-night driving and sleep deprivation. In International conference on data and software engineering (pp. 191–194). IEEE. https://doi.org/10.1109/ICODSE.2015.7436996

    Chapter  Google Scholar 

  14. Ng, A. K. T., Leung, C. H. Y., Chan, L. K. Y., & Lau, H. Y. (2022). K.: Human factors related to cybersickness tolerance in virtual environment. In IEEE conference on virtual reality and 3D user interfaces abstracts and workshops (VRW) (pp. 528–532). IEEE. https://doi.org/10.1109/VRW55335.2022.00118

    Chapter  Google Scholar 

  15. Duh, H. B. L., Parker, D. E., & Furness, T. E. (2004). An independent visual background reduced simulator sickness in a driving simulator. Presence: Teleoperators and Virtual Environments, 13(5), 578–588. https://doi.org/10.1162/1054746042545283

    Article  Google Scholar 

  16. Emoto, M., Sugawara, M., & Nojiri, Y. (2008). Viewing angle dependency of visually induced motion sickness in viewing wide-field images by subjective and autonomic nervous indices. Displays, 29(2), 90–99. https://doi.org/10.1016/j.displa.2007.09.010

    Article  Google Scholar 

  17. Merhi, O., Faugloire, E., Flanagan, M., & Stoffregen, T. A. (2007). Motion sickness, console videogames, and head-mounted displays. Human Factors, 49(5), 920–934. https://doi.org/10.1518/001872007X230262

    Article  Google Scholar 

  18. Szpak, A., Richards, A., Michalski, S. C., & Loetscher, T. (2022). Getting the most out of virtual reality: Evaluating short breaks to reduce cybersickness and cognitive aftereffects. In IEEE conference on virtual reality and 3D user interfaces abstracts and workshops (VRW) (pp. 533–537). IEEE. https://doi.org/10.1109/VRW55335.2022.00119

    Chapter  Google Scholar 

  19. Slater, M., Lotto, B., Arnold, M. M., & Sanchez-Vives, M. V. (2009). How we experience immersive virtual environments: The concept of presence and its measurement. Anuario de Psicologia, 40(2), 193–210.

    Google Scholar 

  20. Buker, T. J., Vincenzi, D. A., & Deaton, J. E. (2012). The effect of apparent latency on simulator sickness while using a see-through helmet mounted display: Reducing apparent latency with predictive compensation. Human Factors, 54(2), 235–249. https://doi.org/10.1177/0018720811428734

    Article  Google Scholar 

  21. Adelstein, B. D., Lee, T. G., & Ellis, S. R. (2003). Head tracking latency in virtual environments: Psychophysics and a model. Human Factors and Ergonomics Society, 47(20), 2083–2087. https://doi.org/10.1177/154193120304702001

    Article  Google Scholar 

  22. Jerald. J. J. (2010). Scene-motion and latency-perception thresholds for head mounted displays. PhD thesis, University of North Carolina at Chapel Hill.

    Google Scholar 

  23. Ajoy, F., & Steven, F. (2016). Combating VR sickness through subtle dynamic field-of-view modification. In IEEE symposium on 3D user interfaces (3DUI) (pp. 201–210). https://doi.org/10.1109/3DUI.2016.7460053

    Chapter  Google Scholar 

  24. Wu, F., & Rosenberg, E. S. (2022). Asymmetric lateral field-of-view restriction to mitigate cybersickness during virtual turns. In Proceedings of the conference on virtual reality and 3D user interfaces (VR) (pp. 103–111). IEEE. https://doi.org/10.1109/VR51125.2022.00028

    Chapter  Google Scholar 

  25. Naoki, K., Hiroki, Y., Masahiro, I., & Yutetsu, M. (2015). Effects of visual induced motion sickness of stereoscopic 3D interactive video. In 4th global conference on consumer electronics (GCCE) (pp. 664–665). IEEE. https://doi.org/10.1109/GCCE.2015.7398678

    Chapter  Google Scholar 

  26. Ang, S., & Quarles, J. (2022). You're in for a bumpy ride! Uneven terrain increases cybersickness while navigating with head mounted displays. In Proceedings of the conference on virtual reality and 3D user interfaces (VR) (pp. 428–435). IEEE. https://doi.org/10.1109/VR51125.2022.00062

    Chapter  Google Scholar 

  27. Onuki, Y., & Kumazawa, I. (2022). Bouncing seat: An immersive virtual locomotion interface with LSTM based body gesture estimation. In Proceedings of the conference on virtual reality and 3D user interfaces abstracts and workshops (VRW) (pp. 834–835). IEEE. https://doi.org/10.1109/VRW55335.2022.00268

    Chapter  Google Scholar 

  28. Hashemian, A. M., Lotfaliei, M., Adhikari, A., Kruijff, E., & Riecke, B. E. (2022). HeadJoystick: Improving flying in VR using a novel leaning-based interface. IEEE Transactions on Visualization and Computer Graphics, 28(4), 1792–1809. https://doi.org/10.1109/TVCG.2020.3025084

    Article  Google Scholar 

  29. Lin, Z., Gu, X., Li, S., Hu, Z., & Wang, G. (2022). Intentional head-motion assisted locomotion for reducing cybersickness. IEEE Transactions on Visualization and Computer Graphics, early access. https://doi.org/10.1109/TVCG.2022.3160232

  30. Saint-Aubert, J., Cogne, M., Bonan, I., Launey, Y., & Lecuyer, A. (2022). Influence of user posture and virtual exercise on impression of locomotion during VR observation. IEEE Transactions on Visualization and Computer Graphics, early access. https://doi.org/10.1109/TVCG.2022.3161130

  31. Mrvelj, Š., Matulin, M., & Martirosov, S. (2020). Subjective evaluation of user quality of experience for omnidirectional video streaming. PROMET Traffic & Transportation, 32(3), 421–433. https://doi.org/10.7307/ptt.v32i3.3444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Matulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matulin, M., Mrvelj, Š., Martirosov, S. (2023). Guidelines for Mitigating Cybersickness During Training in VR Environment Using Head-Mounted Displays. In: Knapčíková, L., Peraković, D. (eds) 7th EAI International Conference on Management of Manufacturing Systems. MMS 2022. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-22719-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22719-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22718-9

  • Online ISBN: 978-3-031-22719-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics