Skip to main content

High-Resolution Wide-Bandwidth Time-Interleaved RF ADC

  • Chapter
  • First Online:
Multi-Gigahertz Nyquist Analog-to-Digital Converters

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 952 Accesses

Abstract

This chapter delves deep into architectural and circuit capabilities to enable high-resolution ADCs (>10-bits) while preserving the multi-GHz sample rate and bandwidth and maximizing the efficiency. Such high resolution, multi-GHz sample rate and bandwidth, low-power RF sampling ADCs are of great interest in next generation wideband communication, data acquisition, and instrumentation applications. First, the needs and challenges for efficiently realizing such RF sampling ADCs are overviewed, and common ADC architectural choices and their trade-offs are briefly discussed. Consequently, a novel TI hybrid RF sampling ADC is presented, and its performance-enabling principles are detailed. Finally, the experimental verification of the ADC prototype in 28 nm CMOS, including the detailed measurement setup, the measured results, and a comparison with recent state-of-the-art, is treated thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The architectural conception of the proposed three-stage pipelined-SAR sub-ADC took place in the late summer of 2016. This occurred prior to and independent of the first available in open literature work of [88], which was in February 2017.

References

  1. J. Mitola, The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)

    Article  Google Scholar 

  2. B. Murmann, EE315B: VLSI Data Conversion Circuits—Lecture Notes (Stanford University, Stanford, 2020)

    Google Scholar 

  3. B. Murmann, ADC performance survey 1997–2022. http://web.stanford.edu/~murmann/adcsurvey.html

  4. A.T. Ramkaj, M. Strackx, M.S. Steyaert, F. Tavernier, A 1.25-GS/s 7-b SAR ADC with 36.4-dB SNDR at 5 GHz using switch-bootstrapping, USPC DAC and triple-tail comparator in 28-nm CMOS. IEEE J. Solid-State Circuits 53(7), 1889–1901 (2018)

    Google Scholar 

  5. K. Doris, E. Janssen, C. Nani, A. Zanikopoulos, G. Van der Weide, A 480 mW 2.6 GS/s 10b time-interleaved ADC with 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE J. Solid-State Circuits 46(12), 2821–2833 (2011)

    Google Scholar 

  6. D. Stepanovic, B. Nikolic, A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid-State Circuits 48(4), 971–982 (2013)

    Google Scholar 

  7. A.M. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, J. Brunsilius, P.R. Derounian et al., A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J. Solid-State Circuits 49(12), 2857–2867 (2014)

    Article  Google Scholar 

  8. A.M. Ali, H. Dinc, P. Bhoraskar, S. Bardsley, C. Dillon, M. Kumar, M. McShea, R. Bunch, J. Prabhakar, S. Puckett, A 12b 18GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration, in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2020), pp. 250–252

    Google Scholar 

  9. C.C. Lee, M.P. Flynn, A SAR-assisted two-stage pipeline ADC. IEEE J. Solid-State Circuits 46(4), 859–869 (2011)

    Article  Google Scholar 

  10. F. van der Goes, C.M. Ward, S. Astgimath, H. Yan, J. Riley, Z. Zeng, J. Mulder, S. Wang, K. Bult, A 1.5 mW 68 dB SNDR 80 MS/s 2× interleaved pipelined SAR ADC in 28 nm CMOS. IEEE J. Solid-State Circuits 49(12), 2835–2845 (2014)

    Google Scholar 

  11. M. Brandolini, Y.J. Shin, K. Raviprakash, T. Wang, R. Wu, H.M. Geddada, Y.-J. Ko, Y. Ding, C.-S. Huang, W.-T. Shih et al., A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE J. Solid-State Circuits 50(12), 2922–2934 (2015)

    Article  Google Scholar 

  12. B. Vaz, A. Lynam, B. Verbruggen, A. Laraba, C. Mesadri, A. Boumaalif, J. Mcgrath, U. Kamath, R. De Le Torre, A. Manlapat et al., A 13b 4GS/s digitally assisted dynamic 3-stage asynchronous pipelined-SAR ADC, in 2017 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2017), pp. 276–277

    Google Scholar 

  13. B. Vaz, B. Verbruggen, C. Erdmann, D. Collins, J. Mcgrath, A. Boumaalif, E. Cullen, D. Walsh, A. Morgado, C. Mesadri et al., A 13bit 5GS/s ADC with time-interleaved chopping calibration in 16 nm FinFET, in 2018 IEEE Symposium on VLSI Circuits-(VLSI) (IEEE, Piscataway, 2018), pp. 99–100

    Google Scholar 

  14. A. Ramkaj, J.C.P. Ramos, Y. Lyu, M. Strackx, J.M. Pelgrom, M. Steyaert, M. Verhelst, F. Tavernier, A 5GS/s 158.6mW 12b passive-sampling 8×-interleaved hybrid ADC with 9.4 ENOB and 160.5 dB FoMs in 28 nm CMOS, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2019), pp. 62–64

    Google Scholar 

  15. A.T. Ramkaj, J.C.P. Ramos, M.J. Pelgrom, M.S. Steyaert, M. Verhelst, F. Tavernier, A 5-GS/s 158.6-mW 9.4-ENOB passive-sampling time-interleaved three-stage pipelined-SAR ADC with analog-digital corrections in 28-nm CMOS. IEEE J. Solid-State Circuits 55(6), 1553–1564 (2020)

    Google Scholar 

  16. E. Janssen, K. Doris, A. Zanikopoulos, A. Murroni, G. Van der Weide, Y. Lin, L. Alvado, F. Darthenay, Y. Fregeais, An 11b 3.6GS/s time-interleaved SAR ADC in 65 nm CMOS, in 2013 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2013), pp. 464–465

    Google Scholar 

  17. J.P. Keane, N.J. Guilar, D. Stepanovic, B. Wuppermann, C. Wu, C.W. Tsang, R. Neff, K. Nishimura, An 8GS/s time-interleaved SAR ADC with unresolved decision detection achieving − 58dBFS noise and 4 GHz bandwidth in 28 nm CMOS, in 2017 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2017), pp. 284–285

    Google Scholar 

  18. A. Buchwald, High-speed time interleaved ADCs. IEEE Commun. Mag. 54(4), 71–77 (2016)

    Article  Google Scholar 

  19. S. Devarajan, L. Singer, D. Kelly, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray et al., A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology. IEEE J. Solid-State Circuits 52(12), 3204–3218 (2017)

    Article  Google Scholar 

  20. N. Le Dortz, J.-P. Blanc, T. Simon, S. Verhaeren, E. Rouat, P. Urard, S. Le Tual, D. Goguet, C. Lelandais-Perrault, P. Benabes, A 1.62GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS, in 2014 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2014), pp. 386–388

    Google Scholar 

  21. S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir et al., A 12b 10GS/s interleaved pipeline ADC in 28 nm CMOS technology, in 2017 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2017), pp. 288–289

    Google Scholar 

  22. X. Staff, [Online Available], Understanding Key Parameters for RF-Sampling Data Converters, White Paper (Xilinx Incorporated, Feb 2019)

    Google Scholar 

  23. D. Kozischek, J. Burton, [Online available], get ready—’cause here it comes: DOCSIS 4.0, white paper, in Broadband Success Partners in collaboration with Corning Optical Communications (2020)

    Google Scholar 

  24. P. Delos, A Review of Wideband RF Receiver Architecture Options (Analog Devices, Incorporated, 2017)

    Google Scholar 

  25. E.H. Armstrong, A new system of short wave amplification. Proc. Inst. Radio Eng. 9(1), 3–11 (1921)

    Google Scholar 

  26. A.A. Abidi, Direct-conversion radio transceivers for digital communications. IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995)

    Article  Google Scholar 

  27. J. Crols, M.S. Steyaert, A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology. IEEE J. Solid-State Circuits 30(12), 1483–1492 (1995)

    Article  Google Scholar 

  28. M. Straayer, J. Bales, D. Birdsall, D. Daly, P. Elliott, B. Foley, R. Mason, V. Singh, X. Wang, A 4GS/s time-interleaved RF ADC in 65 nm CMOS with 4GHz input bandwidth, in 2016 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2016), pp. 464–465

    Google Scholar 

  29. J. Wu, A. Chou, T. Li, R. Wu, T. Wang, G. Cusmai, S.-T. Lin, C.-H. Yang, G. Unruh, S.R. Dommaraju et al., A 4GS/s 13b pipelined ADC with capacitor and amplifier sharing in 16 nm CMOS, in 2016 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2016), pp. 466–467

    Google Scholar 

  30. J.-W. Nam, M. Hassanpourghadi, A. Zhang, M.S.-W. Chen, A 12-bit 1.6, 3.2, and 6.4 GS/s 4-b/cycle time-interleaved SAR ADC with dual reference shifting and interpolation. IEEE J. Solid-State Circuits 53(6), 1765–1779 (2018)

    Google Scholar 

  31. A.M. Ali, H. Dinc, P. Bhoraskar, S. Puckett, A. Morgan, N. Zhu, Q. Yu, C. Dillon, B. Gray, J. Lanford et al., A 14-bit 2.5GS/s and 5GS/s RF sampling ADC with background calibration and dither, in 2016 IEEE Symposium on VLSI Circuits-(VLSI) (IEEE, Piscataway, 2016), pp. 1–2

    Google Scholar 

  32. T. Ali, E. Chen, H. Park, R. Yousry, Y.-M. Ying, M. Abdullatif, M. Gandara, C.-C. Liu, P.-S. Weng, H.-S. Chen et al., A 460mW 112Gb/s DSP-based transceiver with 38dB loss compensation for next-generation data centers in 7 nm FinFET technology, in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2020), pp. 118–120

    Google Scholar 

  33. S. Lee, A. P. Chandrakasan, H.-S. Lee, A 1 GS/s 10b 18.9 mW time-interleaved SAR ADC with background timing skew calibration. IEEE J. Solid-State Circuits 49(12), 2846–2856 (2014)

    Google Scholar 

  34. B. Razavi, The strongARM Latch [a circuit for all seasons]. IEEE Solid-State Circuits Mag. 7(2), 12–17 (2015)

    Article  Google Scholar 

  35. J. Lin, M. Miyahara, A. Matsuzawa, A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique, in 2011 IEEE International Symposium of Circuits and Systems-(ISCAS) (IEEE, Piscataway, 2011), pp. 21–24

    Google Scholar 

  36. T. Astgimath, A Low-Noise Low-Power Dynamic Amplifier with Common Mode Detect and a Low-Power Low-Noise Comparator for Pipelined SAR-ADC – M.Sc. Thesis. TU Delft, Delft, NL, 2012

    Google Scholar 

  37. B. Hershberg, D. Dermit, B. van Liempd, E. Martens, N. Markulic, J. Lagos, J. Craninckx, A 3.2GS/s 10 ENOB 61 mW ringamp ADC in 16 nm with background monitoring of distortion, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2019), pp. 58–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix D: TI ADC Power Estimation with On-Chip Input Buffer

Appendix D: TI ADC Power Estimation with On-Chip Input Buffer

For completeness, we provide here a first-order estimation of the increase in the power consumption, in case an on-chip input buffer would be employed to actively drive this ADC with a sufficiently wide input bandwidth. This estimation assumes a push-pull source follower structure [101] with a low enough output impedance (Z out ≈ 1/g m ≈ 5 Ω). This would necessitate g m,NMOS and g m,PMOS of 100 mS from each of the complementary sides, assuming an equal NMOS/PMOS strength. If we design for a g m/I D of about 10 S/A, easily achievable in process like 28 nm, this would translate to a total quiescent current from the differential circuit of about 20 mA. It is also necessary to utilize a supply voltage of at least 1.8 V to allow a one-row or two-row cascoding for improving the buffer linearity. This would lead to a power consumption from the differential circuit of about 36 mW. If another 4 mW is added for biasing purposes, a total power consumption from the buffer of 40 mW is estimated. This would result in a total ADC plus input buffer power of 198.6 mW, leading to a FoMS and FoMW of 159.5 dB and 58 fJ/conv-step, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramkaj, A.T., Pelgrom, M.J.M., Steyaert, M.S.J., Tavernier, F. (2023). High-Resolution Wide-Bandwidth Time-Interleaved RF ADC. In: Multi-Gigahertz Nyquist Analog-to-Digital Converters. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-031-22709-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22709-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22708-0

  • Online ISBN: 978-3-031-22709-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics