Skip to main content

The Diverging Definition of Robustness in Statistics and Computer Vision

  • Chapter
  • First Online:
Robust and Multivariate Statistical Methods
  • 494 Accesses

Abstract

Statistics and computer vision have a different role for robustness. Statisticians are primarily concerned with the theoretical properties of estimators when models are only approximately true. In computer vision, performance takes precedence over theoretical considerations. This divergence is exemplified in statistics by the robust M-estimator in contrast to the RANdom SAmple Consensus (RANSAC) and the Multiple Input Structures with Robust Estimator (MISRE) in computer vision. All three have defined algorithms, but the M-estimator is based on theoretical results, while RANSAC and MISRE only emphasize recovering significant inlier structures. I offer suggestions for how the theory of the M-estimator can be further applied to MISRE, or MISRE can be applied to M-estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beder, C., & Förstner, W. (2006). Direct solutions for computing cylinders from minimal sets of 3D points. In 2006 European Conference on Computer Vision (vol. 3952, pp. 135–146). Springer.

    Google Scholar 

  • Chen, H., Meer, P., & Tyler, D. E. (2001). Robust regression for data with multiple structures. In 2001 IEEE Computer Vision and Pattern Recognition (pp. 1069–1075).

    Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603–619.

    Article  Google Scholar 

  • Comaniciu, D., Meer, P., & Tyler, D. E. (2003). Dissimilarity computation through low rank corrections. Pattern Recognition Letters, 24, 227–236.

    Article  MATH  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381–395.

    Article  MathSciNet  Google Scholar 

  • Hald, A. (2007). A history of parametric statistical inference from Bernoulli to Fisher, 1713 to 1935. Springer.

    MATH  Google Scholar 

  • Hough, P. (1959). Machine analysis of bubble chamber pictures. In International Conference on High Energy Accelerators and Instrumentation. CERN.

    Google Scholar 

  • Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K. M., & Trulls, E. (2021). Image matching across wide baselines: From paper to practice. International Journal of Computer Vision, 129, 517–547.

    Article  Google Scholar 

  • Matei, B., Meer, P., & Tyler, D. E. (1998). Performance assessment by resampling: Rigid motion estimators. In K. W. Bowyer & P. J. Phillips (Eds.), Empirical Evaluation Techniques in Computer Vision (pp. 72–95). IEEE CS Press.

    Google Scholar 

  • Morgenthaler, S. (2007). A survey of robust statistics. Discussion. Statistical Methods and Applications, 15, 271–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79, 871–880.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P. J., & Leroy, A. (1987). Robust Regression and Outlier Detection. John Viley & Sons.

    Google Scholar 

  • Stigler, S. M. (1973). Simon Newcomb, Percy Daniell, and the history of robust estimation 1885–1920. Journal of the American Statistical Association, 68, 872–879.

    MathSciNet  MATH  Google Scholar 

  • Stigler, S. M. (1986). The history of statistics. The measurement of uncertainty before 1900. Harvard University Press.

    MATH  Google Scholar 

  • Stigler, S. M. (2010). The changing history of robustness. The American Statistician, 64, 277–281.

    Article  MathSciNet  Google Scholar 

  • Tyler, D. E. (2013). A short course on robust statistics. http://www.stat.rutgers.edu/home/dtyler/ShortCourse.pdf. On-line, Rutgers University.

    Google Scholar 

  • Yang, X., Meer, P., & Meer, J. (2021). A new approach to robust estimation of parametric structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3754–3769.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Jonathan Meer for all the suggestions which made this essay possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Meer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meer, P. (2023). The Diverging Definition of Robustness in Statistics and Computer Vision. In: Yi, M., Nordhausen, K. (eds) Robust and Multivariate Statistical Methods. Springer, Cham. https://doi.org/10.1007/978-3-031-22687-8_18

Download citation

Publish with us

Policies and ethics