Skip to main content

Efficient-Secure k-means Clustering Guaranteeing Personalized Local Differential Privacy

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13777))

  • 1519 Accesses

Abstract

One highly discussed research topic is user privacy protection and the usability of models in data mining tasks. Currently, the most k-means clustering approach using differential privacy is based on trusted third-party servers. However, malicious servers exist in many applications and cause privacy leakages of user data. The Personalized Local Differential Privacy k-means algorithm (PLDP k-means) is proposed in this paper. To satisfy the PLDP mechanism, a perturbation mechanism is used to perturb the user data at the local side. Then clustering is completed by iteration between the local and server sides. The third-party server remains inaccessible to the real user data and considers the users’ personalized privacy demands in the proposed algorithm. In addition, the iterative centroid perturbation algorithm is proposed in this paper for resisting inference attacks and improving the utility of clustering via a privacy budget allocation sequence. Theoretical analysis demonstrates the privacy of the proposed algorithm. Experimental results indicate that the proposed algorithm effectively preserves the utility of clustering while satisfying the PLDP mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, X., Yang, L.T., Song, L., Wang, H., Ren, L., Deen, M.J.: A tensor-based multiattributes visual feature recognition method for industrial intelligence. IEEE Trans. Ind. Informatics 17(3), 2231–2241 (2021)

    Article  Google Scholar 

  2. Liu, Q., Tian, Y., Wu, J., Peng, T., Wang, G.: Enabling verifiable and dynamic ranked search over outsourced data. IEEE Trans. Serv. Comput. 15(1), 69–82 (2022)

    Article  Google Scholar 

  3. Wang, S., Sun, Y., Bao, Z.: On the efficiency of k-means clustering: evaluation, optimization, and algorithm selection. In: Proceedings of the VLDB Endowment, pp. 163–175 (2020)

    Google Scholar 

  4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  5. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  6. Xiao, Y., Xiong, L.: Protecting locations with differential privacy under temporal correlations. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 1298–1309. ACM, Denver (2015)

    Google Scholar 

  7. Su, D., Cao, J., Li, N., Bertino, E., Lyu, M., Jin, H.: Differentially private k-means clustering and a hybrid approach to private optimization. ACM Trans. Priv. Secur. 20(4), 1–33 (2017)

    Article  Google Scholar 

  8. Nguyen, T.D., Gupta, S., Rana, S., Venkatesh, S.: Privacy aware K-means clustering with high utility. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 388–400. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2_31

    Chapter  Google Scholar 

  9. Bertino, E.: Differentially private k-means clustering. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 26–37. ACM, New Orleans (2016)

    Google Scholar 

  10. Ni, T., Qiao, M., Chen, Z., Zhang, S., Zhong, H.: Utility-efficient differentially private k-means clustering based on cluster merging. Neurocomputing 424(1), 205–214 (2021)

    Article  Google Scholar 

  11. Ye, Q.Q., Meng, X.F., Zhu, M.J., Huo, Z.: Survey on local differential privacy. J. Softw. 29(7), 1981–2005 (2018)

    MathSciNet  Google Scholar 

  12. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 1054–1067. ACM, Scottsdale (2014)

    Google Scholar 

  13. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at scale: local differential privacy in practice. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1655–1658. ACM, Houston, TX, USA (2018)

    Google Scholar 

  14. Xia, C., Hua, J., Tong, W., Zhong, S.: Distributed k-means clustering guaranteeing local differential privacy. Comput. Secur. 90(1), 1–11 (2020)

    Google Scholar 

  15. Gu, X., Li, M., Xiong, L., Cao, Y.: Providing input-discriminative protection for local differential privacy. In: International Conference on Data Engineering(ICDE), pp. 505–516. IEEE, Dallas, Texas (2016)

    Google Scholar 

  16. Chen, R., Li, H., Qin, A.K., Kasiviswanathan, S.P., Jin, H.: Private spatial data aggregation in the local setting. In: 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016, pp. 289–300. IEEE, Helsinki, Finland (2016)

    Google Scholar 

  17. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for locally private estimation. J. Am. Stat. Assoc. 113(521), 182–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant 61801131, and Guangxi Natural Science Foundation under Grant 2022GXNSFAA035632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Y., Wang, Z., Zhang, S., Liu, J. (2023). Efficient-Secure k-means Clustering Guaranteeing Personalized Local Differential Privacy. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22677-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22676-2

  • Online ISBN: 978-3-031-22677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics