Skip to main content

Precipitation Behavior in Low-alloyed Mg–Ca–Zn Alloys

  • Conference paper
  • First Online:
Magnesium Technology 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 864 Accesses

Abstract

Low-alloyed Mg–Ca–Zn alloys are promising as a base system of heat-treatable wrought alloys because of their rapid age-hardenability. The trace addition of Zn plays a critical role in accelerating the age-hardening response and following precipitation behavior of Mg–Ca binary alloys. This study reports the role of Zn on the rapid age-hardening and precipitation sequence in a Mg–0.3Ca–0.6Zn (at.%) alloy during isothermal aging at 200 °C using positron annihilation lifetime spectroscopy (PALS), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). PALS analysis indicates the absence of excess quenched-in vacancies in the as-quenched condition. Instead, the smaller trapping sites, i.e., open spaces, can facilitate the formation of Ca–Zn co-clusters even in the as-quenched condition. APT analysis reveals that the number density of Ca–Zn co-clusters in the Mg–0.3Ca–0.6Zn alloy increases in the early stage of aging, while that of Ca clusters tends to decrease in the Mg–0.3Ca alloy. These results indicate that the rapid age-hardening is attributed to the formation of a large number of Ca–Zn co-clusters. Microstructure analysis using aberration-corrected STEM provides further insights into the precipitation process of the Mg–0.3Ca–0.6Zn alloy. The atomic structures and stability of precipitates are identified by first-principles calculations. A precise precipitation sequence is established as: S.S.S.S → G.P. zones → η″ → η′ → η′ pairs and stacks/η1 → η.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.A. Dobrzanski, G.E. Totten, M. Bamberger, Magnesium and Its Alloys: Technology and Applications CRC Press, Taylor & Francis Group, Florida, 2020.

    Google Scholar 

  2. S. You, Y. Huang, K.U. Kainer, N. Hort, Recent research and developments on wrought magnesium alloys, J. Mag. Alloys 5 (2017) 239–253.

    Article  CAS  Google Scholar 

  3. S.B. Yi, J. Bohlen, F. Heinemann, D. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets, Acta Mater. 58 (2010) 592–605.

    Article  CAS  Google Scholar 

  4. X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling, J. Alloy Compd. 632 (2015) 94–102.

    Article  CAS  Google Scholar 

  5. M.Z. Bian, T.T. Sasaki, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, K. Hono, Bake-hardenable Mg–Al–Zn–Mn–Ca sheet alloy processed by twin-roll casting, Acta Mater. 158 (2018) 278–288.

    Article  CAS  Google Scholar 

  6. D. Klaumünzer, J. Victoria-Hernandez, S. Yi, D. Letzig, S.H. Kim, J.J. Kim, M.H. Seo, K. Ahn, Magnesium Process and Alloy Development for Applications in the Automotive Industry Magnesium Technology 2019, TMS, 2019, pp. 15–20.

    Google Scholar 

  7. Z.H. Li, T.T. Sasaki, T. Shiroyama, A. Miura, K. Uchida, K. Hono, Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy, Mater. Res. Lett. 8 (2020) 335–340.

    Article  CAS  Google Scholar 

  8. Y. Ortega, J. del Río, Study of Mg–Ca alloys by positron annihilation technique, Scr. Mater. 52 (2005) 181–186.

    Article  CAS  Google Scholar 

  9. Y. Ortega, M.A. Monge, R. Pareja, The precipitation process in Mg–Ca–(Zn) alloys investigated by positron annihilation spectroscopy, J. Alloys Comp. 463 (2008) 62–66.

    Article  CAS  Google Scholar 

  10. J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A 43A (2012) 3891–3939.

    Article  Google Scholar 

  11. K. Oh-ishi, R. Watanabe, C.L. Mendis, K. Hono, Age-hardening response of Mg–0.3 at.% Ca alloys with different Zn contents, Mater. Sci. Eng. A 526 (2009) 177–184.

    Google Scholar 

  12. R.E. Schäublin, M. Becker, M. Cihova, S.S.A. Gerstl, D. Deiana, C. Hébert, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, Precipitation in lean Mg–Zn–Ca alloys, Acta Mater. 239 (2022) 118223.

    Article  Google Scholar 

  13. Z.H. Li, T.T. Sasaki, T. Shiroyama, A. Miura, K. Uchida, K. Hono, Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys, Scr. Mater. 216 (2022) 114735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. H. Li or T. T. Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z.H. et al. (2023). Precipitation Behavior in Low-alloyed Mg–Ca–Zn Alloys. In: Barela, S., Leonard, A., Maier, P., Neelameggham, N.R., Miller, V.M. (eds) Magnesium Technology 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22645-8_8

Download citation

Publish with us

Policies and ethics