Skip to main content

Lung Cancer Staging Methods: A Practical Approach

  • Chapter
  • First Online:
Interventions in Pulmonary Medicine

Abstract

The dilemma that many clinicians face is being able to recognize which patients have a higher likelihood of developing lung cancer and which biopsy modality would provide an accurate diagnosis and stage, while limiting the risk to the patient. Determining the extent of disease is crucial for both prognosis and therapy.

The evaluation should begin with a thorough history and physical exam followed by radiographic imaging of the chest. Initial studies usually include a chest x-ray, but often progress to a computed tomography (CT) of the chest with further extra-thoracic imaging as dictated by symptoms. Following the CT of the chest, positron emission tomography-computed tomography (PET-CT) can be used to evaluate for radiographic staging, possible targets for biopsy, and identify occult metastatic disease.

Once a target is identified, minimally invasive needle techniques to diagnose and stage the mediastinum have become the standard of care. If biopsy by minimally invasive techniques is negative, it should be followed by surgical biopsy/staging. Metastatic disease outside of the chest identified on CT chest and/or PET-CT should be further investigated with biopsy as this would provide both a diagnosis and staging in one procedure. Mutational analysis of a patient’s tumor has rapidly become standard of care during the diagnostic process so that patients can receive the most appropriate therapy available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACCP:

American College of Chest Physicians

ALK:

Anaplastic lymphoma kinase

BRAF:

B-Raf proto-oncogene serine/threonine kinase

CP-EBUS:

curvilinear probe endobronchial ultrasound

CT:

Computed tomography

CXR:

Chest x-ray

EBUS-FNA:

Endobronchial ultrasound fine needle aspiration

EBUS-TBNA:

Endobronchial ultrasound with transbronchial needle aspiration

ECM:

Extended cervical mediastinoscopy

EGFR:

Epidermal growth factor receptor

ENB:

Electromagnetic navigation bronchoscopy

EUS-FNA:

Endoscopic ultrasound fine needle aspiration

FDG:

18F-Fluorodeoxyglucose

HHM:

Humoral hypercalcemia of malignancy

LDCT:

Low dose computed tomography

MET:

Mesenchymal epithelial transition

MPE:

Malignant pleural effusion

MRI:

Magnetic resonance imaging

NTRK:

Neurotrophic tyrosine receptor kinase

NCCN:

National comprehensive cancer network

NLST:

National lung cancer screening trial

NPV:

Negative predictive value

NSCLC:

Non-small cell lung cancer

PD-L1:

Programmed death ligand 1

PE:

Pulmonary embolism

PET-CT:

Positron emission tomography-computed tomography

PPL:

Peripheral pulmonary lesions

PPV:

Positive predictive value

RB:

Robotic bronchoscopy

RCT:

Randomized controlled trials

RET:

Rearranged during transfection

ROS1:

c-Ros oncogene 1

ROSE:

Rapid onsite evaluation

RP-EBUS:

Radial probe endobronchial ultrasound

SCC:

Squamous cell carcinoma

SCM:

Standard cervical mediastinoscopy

SIADH:

Syndrome of inappropriate antidiuretic hormone secretion

SUV:

Standardized uptake value

TBNA:

Transbronchial needle aspiration

TNM:

Tumor node metastasis

TTNA:

Transthoracic needle aspiration

USPSTF:

United States preventive services task force

VATS:

Video-assisted thoracoscopic surgery

VBN:

Virtual bronchoscopic navigation

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Dyba T, Randi G, Bray F, et al. The European cancer burden in 2020: incidence and mortality estimates for 40 countries and 25 major cancers. Eur J Cancer. 1990;2021(157):308–47. https://doi.org/10.1016/j.ejca.2021.07.039.

    Article  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  4. de Koning HJ, van der Aalst, Carlijn M, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503–13. https://doi.org/10.1056/NEJMoa1911793.

    Article  PubMed  Google Scholar 

  5. US Preventive Services Task Force, Krist AH, Davidson KW, et al. Screening for lung cancer: US preventive services task force recommendation statement. JAMA. 2021;325(10):962–70. https://escholarship.org/uc/item/4d08218t

    Article  Google Scholar 

  6. Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51. https://doi.org/10.1016/j.jtho.2015.09.009.

    Article  PubMed  Google Scholar 

  7. Ettinger DS, Wood DE, Aisner DL, et al. NCCN guidelines insights: Non–Small cell lung cancer, version 2.2021. J Natl Compr Cancer Netw. 2021;19(3):254–66. https://doi.org/10.6004/jnccn.2021.0013.

    Article  CAS  Google Scholar 

  8. Kocher F, Hilbe W, Seeber A, et al. Longitudinal analysis of 2293 NSCLC patients: A comprehensive study from the TYROL registry. Lung Cancer. 2015;87(2):193–200. https://www.sciencedirect.com/science/article/pii/S0169500214005169. https://doi.org/10.1016/j.lungcan.2014.12.006.

    Article  PubMed  Google Scholar 

  9. Riihimäki M, Hemminki A, Fallah M, et al. Metastatic sites and survival in lung cancer. Lung Cancer. 2014;86(1):78–84. https://www.sciencedirect.com/science/article/pii/S0169500214003201. https://doi.org/10.1016/j.lungcan.2014.07.020.

    Article  PubMed  Google Scholar 

  10. Kanaji N, Watanabe N, Kita N, et al. Paraneoplastic syndromes associated with lung cancer. World J Clin Oncol. 2014;5(3):197–223. https://doi.org/10.5306/wjco.v5.i3.197.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Spiro SG, Gould MK, Colice GL. Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132:149S–60S.

    Article  PubMed  Google Scholar 

  12. Silvestri GA, Gonzalez AV, Jantz MA, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e211S–50S. . https://www.ncbi.nlm.nih.gov/pubmed/23649440. https://doi.org/10.1378/chest.12-2355.

    Article  PubMed  Google Scholar 

  13. Varela G, Thomas PA. Surgical management of advanced non-small cell lung cancer. J Thorac Dis. 2014;6(Suppl 2):S217–23. https://www.ncbi.nlm.nih.gov/pubmed/24868439. https://doi.org/10.3978/j.issn.2072-1439.2014.04.34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Surveillance Research Program, National Cancer Institute SEER*Stat software (seer.cancer.gov/seerstat) SEER 18 2011–2017.

  15. Kowalski DM, Cho BC, Lubiniecki GM, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30. https://doi.org/10.1016/S0140-6736(18)32409-7.

    Article  PubMed  Google Scholar 

  16. Li J, Xu W, Kong F, Sun X, Zuo X. Meta-analysis: accuracy of 18FDG PET-CT for distant metastasis staging in lung cancer patients. Surg Oncol. 2013;22(3):151–5. https://doi.org/10.1016/j.suronc.2013.04.001.

    Article  PubMed  Google Scholar 

  17. Søgaard R, Fischer BMB, Mortensen J, Højgaard L, Lassen U. Preoperative staging of lung cancer with PET/CT: cost-effectiveness evaluation alongside a randomized controlled trial. Eur J Nucl Med Mol Imaging. 2011;38(5):802–9. https://doi.org/10.1007/s00259-010-1703-y.

    Article  PubMed  Google Scholar 

  18. Silvestri GA, Littenberg B, Colice GL. The clinical evaluation for detecting metastatic lung cancer : A meta-analysis. Am J Respir Crit Care Med. 1995;152(1):225–30.

    Article  CAS  PubMed  Google Scholar 

  19. Sun Y, Yu H, Ma J, Lu P. The role of 18F-FDG PET/CT integrated imaging in distinguishing malignant from benign pleural effusion. PLoS One. 2016;11(8):e0161764. https://www.ncbi.nlm.nih.gov/pubmed/27560933. https://doi.org/10.1371/journal.pone.0161764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brady MJ, Thomas J, Wong TZ, Franklin KM, Ho LM, Paulson EK. Adrenal nodules at FDG PET/CT in patients known to have or suspected of having lung cancer: A proposal for an efficient diagnostic algorithm. Radiology. 2009;250(2):523–30. https://www.ncbi.nlm.nih.gov/pubmed/19188319. https://doi.org/10.1148/radiol.2502080219.

    Article  PubMed  Google Scholar 

  21. Wu Q, Luo W, Zhao Y, Xu F, Zhou Q. The utility of 18F-FDG PET/CT for the diagnosis of adrenal metastasis in lung cancer: A PRISMA-compliant meta-analysis. Nucl Med Commun. 2017;38(12):1117–24. https://www.ncbi.nlm.nih.gov/pubmed/28953208. https://doi.org/10.1097/MNM.0000000000000757.

    Article  PubMed  Google Scholar 

  22. Choi SH, Kim SY, Park SH, Kim KW, Lee JY, Lee SS, Lee MG. Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: systematic review and meta-analysis. J Magn Reson Imaging. 2018;47(5):1237–50. https://doi.org/10.1002/jmri.25852. Epub 2017 Sep 13

    Article  PubMed  Google Scholar 

  23. Detterbeck FC, Mazzone PJ, Naidich DP, Bach PB. Screening for lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e78S–92S. https://www.ncbi.nlm.nih.gov/pubmed/23649455. https://doi.org/10.1378/chest.12-2350.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee HY, Lee KS, Kim B, et al. Diagnostic efficacy of PET/CT plus brain MR imaging for detection of extrathoracic metastases in patients with lung adenocarcinoma. J Korean Med Sci. 2009;24(6):1132–8. https://www.ncbi.nlm.nih.gov/pubmed/19949671. https://doi.org/10.3346/jkms.2009.24.6.1132.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Jin G, Su D. Comparison of gadolinium-enhanced MRI and 18FDG PET/PET-CT for the diagnosis of brain metastases in lung cancer patients: A meta-analysis of 5 prospective studies. Oncotarget. 2017;8(22):35743–9. https://www.ncbi.nlm.nih.gov/pubmed/28415747. https://doi.org/10.18632/oncotarget.16182.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qu X, Huang X, Yan W, Wu L, Dai K. A meta-analysis of 18FDG-PET–CT, 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012;81(5):1007–15. 10.1016/j.ejrad.2011.01.126

    Article  PubMed  Google Scholar 

  27. VanderLaan PA, Yamaguchi N, Folch E, et al. Success and failure rates of tumor genotyping techniques in routine pathological samples with non-small-cell lung cancer. Lung Cancer. 2014;84(1):39–44. https://www.clinicalkey.es/playcontent/1-s2.0-S016950021400049X. https://doi.org/10.1016/j.lungcan.2014.01.013.

    Article  PubMed  Google Scholar 

  28. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e142S–65S. . https://www.ncbi.nlm.nih.gov/pubmed/23649436. https://doi.org/10.1378/chest.12-2353.

    Article  PubMed  Google Scholar 

  29. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. http://content.nejm.org/cgi/content/abstract/350/21/2129. https://doi.org/10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  30. Gutierrez ME, Choi K, Lanman RB, et al. Genomic profiling of advanced non-small cell lung cancer in community settings: gaps and opportunities. Clin Lung Cancer. 2017;18(6):651–9. https://www.clinicalkey.es/playcontent/1-s2.0-S1525730417301092. https://doi.org/10.1016/j.cllc.2017.04.004.

    Article  PubMed  Google Scholar 

  31. Silvestri GA, Gould MK, Margolis ML, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):178S–201S. https://www.ncbi.nlm.nih.gov/pubmed/17873168

    Article  PubMed  Google Scholar 

  32. Pretreatment evaluation of non-small-cell lung cancer. The American Thoracic Society and The European Respiratory Society. Am J Respir Crit Care Med. 1997;156(1):320–32. https://doi.org/10.1164/ajrccm.156.1.ats156.1.

    Article  Google Scholar 

  33. Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossman HB, Fisher S. 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. feasibility studies for cancer imaging with positron-emission tomography. Cancer. 1991;67(6):1544–50. https://doi.org/10.1002/1097-0142(19910315)67:6<1544::AID-CNCR2820670614>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  34. Paesmans M, Garcia C, Wong CO, et al. Primary tumour standardised uptake value is prognostic in nonsmall cell lung cancer: A multivariate pooled analysis of individual data. Eur Respir J. 2015;46(6):1751–61. https://www.narcis.nl/publication/RecordID/oai:cris.maastrichtuniversity.nl:publications%2F2c3174a7-5568-45e4-b08f-d2aa911cc6b0.https://doi.org/10.1183/13993003.00099-2015.

    Article  CAS  PubMed  Google Scholar 

  35. Maziak DE, Darling GE, Levine MN, et al. Positron emission tomography in staging early lung cancer: A randomized trial. Ann Intern Med. 2009;151(4):221–8. https://www.ncbi.nlm.nih.gov/pubmed/19581636. https://doi.org/10.7326/0003-4819-151-4-200908180-00132.

    Article  PubMed  Google Scholar 

  36. van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359(9315):1388–92. https://doi.org/10.1016/S0140-6736(02)08352-6.

    Article  PubMed  Google Scholar 

  37. Viney RC, Boyer MJ, King MT, et al. Randomized controlled trial of the role of positron emission tomography in the management of stage I and II non-small-cell lung cancer. J Clin Oncol. 2004;22(12):2357–62. http://jco.ascopubs.org/content/22/12/2357.abstract. https://doi.org/10.1200/JCO.2004.04.126.

    Article  PubMed  Google Scholar 

  38. Fischer B, Lassen U, Mortensen J, et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med. 2009;361(1):32–9. http://content.nejm.org/cgi/content/abstract/361/1/32. https://doi.org/10.1056/NEJMoa0900043.

    Article  CAS  PubMed  Google Scholar 

  39. Fischer BM, Mortensen J, Hansen H, et al. Multimodality approach to mediastinal staging in non-small cell lung cancer. Faults and benefits of PET-CT: A randomised trial. Thorax. 2011;66(4):294–300. https://doi.org/10.1136/thx.2010.154476.

    Article  PubMed  Google Scholar 

  40. De Wever W, Vankan Y, Stroobants S, Verschakelen J. Detection of extrapulmonary lesions with integrated PET/CT in the staging of lung cancer. Eur Respir J. 2007;29(5):995–1002. http://erj.ersjournals.com/cgi/content/abstract/29/5/995. https://doi.org/10.1183/09031936.00119106.

    Article  PubMed  Google Scholar 

  41. De Wever W, Ceyssens S, Mortelmans L, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol. 2007;17(1):23–32. https://www.ncbi.nlm.nih.gov/pubmed/16683115. https://doi.org/10.1007/s00330-006-0284-4.

    Article  PubMed  Google Scholar 

  42. Herder G, Kramer H, Hoekstra OS, et al. Traditional versus up-front [18F] Fluorodeoxyglucose–Positron emission tomography staging of Non–Small-cell lung cancer: A dutch cooperative randomized study. J Clin Oncol. 2006;24(12):1800–6. http://jco.ascopubs.org/content/24/12/1800.abstract. https://doi.org/10.1200/JCO.2005.02.4695.

    Article  PubMed  Google Scholar 

  43. Morgensztern D, Goodgame B, Baggstrom MQ, Gao F, Govindan R. The effect of FDG-PET on the stage distribution of non-small cell lung cancer. J Thorac Oncol. 2008;3(2):135–9. https://doi.org/10.1097/JTO.0b013e3181622c2c.

    Article  PubMed  Google Scholar 

  44. Gupta NC, Graeber GM, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions. Chest. 2000;117(3):773–8. https://doi.org/10.1378/chest.117.3.773.

    Article  CAS  PubMed  Google Scholar 

  45. Kauczor H, Kreitner K. MRI of the pulmonary parenchyma. Eur Radiol. 1999;9(9):1755–64. https://www.ncbi.nlm.nih.gov/pubmed/10602947. https://doi.org/10.1007/s003300050919.

    Article  CAS  PubMed  Google Scholar 

  46. Webb WR, Gatsonis C, Zerhouni EA, et al. CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the radiologic diagnostic oncology group. Radiology. 1991;178(3):705–13. http://radiology.rsna.org/content/178/3/705.abstract. https://doi.org/10.1148/radiology.178.3.1847239.

    Article  CAS  PubMed  Google Scholar 

  47. Wahidi MM, Herth F, Yasufuku K, et al. Technical aspects of endobronchial ultrasound-guided transbronchial needle aspiration: CHEST guideline and expert panel report. Chest. 2016;149(3):816–35. https://www.ncbi.nlm.nih.gov/pubmed/26402427. https://doi.org/10.1378/chest.15-1216.

    Article  PubMed  Google Scholar 

  48. Grosu HB. EBUS-TBNA for the diagnosis of lymphoma: time to give in? J Bronchology Interv Pulmonol. 2018;25(3):165–6. https://www.ncbi.nlm.nih.gov/pubmed/29944587. https://doi.org/10.1097/LBR.0000000000000524.

    Article  PubMed  Google Scholar 

  49. Avasarala SK, Aravena C, Almeida FA. Convex probe endobronchial ultrasound: historical, contemporary, and cutting-edge applications. J Thorac Dis. 2020;12(3):1085–99. https://www.ncbi.nlm.nih.gov/pubmed/32274177. https://doi.org/10.21037/jtd.2019.10.76.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Herth FJF, Ernst A, Eberhardt R, Vilmann P, Dienemann H, Krasnik M. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically normal mediastinum. Eur Respir J. 2006;28(5):910–4. http://erj.ersjournals.com/cgi/content/abstract/28/5/910. https://doi.org/10.1183/09031936.06.00124905.

    Article  CAS  PubMed  Google Scholar 

  51. Herth FJF, Eberhardt R, Krasnik M, Ernst A. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically and positron emission tomography-normal mediastinum in patients with lung cancer. Chest. 2008;133(4):887–91. https://doi.org/10.1378/chest.07-2535.

    Article  PubMed  Google Scholar 

  52. Tanner NT, Yarmus L, Chen A, et al. Standard bronchoscopy with fluoroscopy vs thin bronchoscopy and radial endobronchial ultrasound for biopsy of pulmonary lesions: A multicenter, prospective, randomized trial. Chest. 2018;154(5):1035–43. https://www.ncbi.nlm.nih.gov/pubmed/30144421. https://doi.org/10.1016/j.chest.2018.08.1026.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Silvestri GA, Feller-Kopman D, Chen A, Wahidi M, Yasufuku K, Ernst A. Latest advances in advanced diagnostic and therapeutic pulmonary procedures. Chest. 2012;142(6):1636–44. https://www.clinicalkey.es/playcontent/1-s2.0-S0012369212607004. https://doi.org/10.1378/chest.12-2326.

    Article  PubMed  Google Scholar 

  54. Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: A randomised trial. Thorax. 2011;66(12):1072–7. https://doi.org/10.1136/thx.2010.145490.

    Article  PubMed  Google Scholar 

  55. Bo L, Li C, Pan L, et al. Diagnosing a solitary pulmonary nodule using multiple bronchoscopic guided technologies: A prospective randomized study. Lung Cancer. 2019;129:48–54. https://doi.org/10.1016/j.lungcan.2019.01.006.

    Article  PubMed  Google Scholar 

  56. Berhardt R, Anantham D, Ernst A, Feller-Kopman D, Herth F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: A randomized controlled trial. Am J Respir Crit Care Med. 2007;176(1):36–41. http://ajrccm.atsjournals.org/cgi/content/abstract/176/1/36. https://doi.org/10.1164/rccm.200612-1866OC.

    Article  Google Scholar 

  57. Ost DE, Ernst A, Lei X, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQuIRE registry. Am J Respir Crit Care Med. 2016;193(1):68–77. https://www.ncbi.nlm.nih.gov/pubmed/26367186. https://doi.org/10.1164/rccm.201507-1332OC.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Murgu SD. Robotic assisted-bronchoscopy: technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm Med. 2019;19(1):89. https://www.ncbi.nlm.nih.gov/pubmed/31072355. https://doi.org/10.1186/s12890-019-0857-z.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen AC, Pastis J, Nicholas J, Mahajan AK, et al. Robotic bronchoscopy for peripheral pulmonary lesions: A multicenter pilot and feasibility study (BENEFIT). Chest. 2021;159(2):845–52. https://www.ncbi.nlm.nih.gov/pubmed/32822675. https://doi.org/10.1016/j.chest.2020.08.2047.

    Article  PubMed  Google Scholar 

  60. Chockalingam A, Hong K. Transthoracic needle aspiration: the past, present and future. J Thorac Dis. 2015;7(Suppl 4):S292–9. https://www.ncbi.nlm.nih.gov/pubmed/26807277. https://doi.org/10.3978/j.issn.2072-1439.2015.12.01.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Birchard KR. Transthoracic needle biopsy semin intervent radiol. 2011;28(1):87–97. https://doi.org/10.1055/s-0031-1273943.

    Article  PubMed  Google Scholar 

  62. Schreiber G, Mccrory DC. Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. Chest. 2003;123(1):115S–28S. https://www.ncbi.nlm.nih.gov/pubmed/12527571

    Article  PubMed  Google Scholar 

  63. Wiener RS, Schwartz LM, Woloshin S, Welch HG. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: an analysis of discharge records. Ann Intern Med. 2011;155(3):137–44. https://www.ncbi.nlm.nih.gov/pubmed/21810706. https://doi.org/10.7326/0003-4819-155-3-201108020-00003.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu Q, Ben S, Xia Y, Wang K, Huang H. Evolution of transbronchial needle aspiration technique. J Thorac Dis. 2015;7(Suppl 4):S224–30. https://www.ncbi.nlm.nih.gov/pubmed/26807269. https://doi.org/10.3978/j.issn.2072-1439.2015.11.31.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wallace MB, Pascual JMS, Raimondo M, et al. Minimally invasive endoscopic staging of suspected lung cancer. JAMA. 2008;299(5):540–6. https://doi.org/10.1001/jama.299.5.540.

    Article  CAS  PubMed  Google Scholar 

  66. Yamao K, Sawaki A, Mizuno N, Shimizu Y, Yatabe Y, Koshikawa T. Endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNAB): past, present, and future. J Gastroenterol. 2005;40(11):1013–23. https://www.ncbi.nlm.nih.gov/pubmed/16322944. https://doi.org/10.1007/s00535-005-1717-6.

    Article  PubMed  Google Scholar 

  67. Wang Z, Jiang C. Endoscopic ultrasound in the diagnosis of mediastinal diseases. Open Med. 2015;10(1):560–5. http://www.degruyter.com/doi/10.1515/med-2015-0095. https://doi.org/10.1515/med-2015-0095.

    Article  Google Scholar 

  68. Colella S, Vilmann P, Konge L, Clementsen PF. Endoscopic ultrasound in the diagnosis and staging of lung cancer. Endosc Ultrasound. 2014;3(4):205–12. https://www.ncbi.nlm.nih.gov/pubmed/25485267. https://doi.org/10.4103/2303-9027.144510.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vazquez-Sequeiros E, Levy MJ, Van Domselaar M, et al. Diagnostic yield and safety of endoscopic ultrasound guided fine needle aspiration of central mediastinal lung masses. Diagnostic and therapeutic endoscopy. 2013;2013:150492–6. https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=P20151216003-201312-201703090034-201703090034-8-13. https://doi.org/10.1155/2013/150492.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen L, Li Y, Gao X, et al. High diagnostic accuracy and safety of endoscopic ultrasound-guided fine-needle aspiration in malignant lymph nodes: A systematic review and meta-analysis. Dig Dis Sci. 2021;66(8):2763–75. https://search.proquest.com/docview/2446671513. https://doi.org/10.1007/s10620-020-06554-2.

    Article  PubMed  Google Scholar 

  71. Call S, Obiols C, Rami-Porta R. Present indications of surgical exploration of the mediastinum. J Thorac Dis. 2018;10(Suppl 22):S2601–10. https://www.ncbi.nlm.nih.gov/pubmed/30345097. https://doi.org/10.21037/jtd.2018.03.183.

    Article  PubMed  PubMed Central  Google Scholar 

  72. D'Andrilli A, Maurizi G, Venuta F, Rendina EA. Mediastinal staging: When and how? Gen Thorac Cardiovasc Surg. 2020;68(7):725–32. https://www.ncbi.nlm.nih.gov/pubmed/31797211. https://doi.org/10.1007/s11748-019-01263-8.

    Article  PubMed  Google Scholar 

  73. Witte B, Wolf M, Hillebrand H, Kriegel E, Huertgen M. Extended cervical mediastinoscopy revisited. Eur J Cardiothorac Surg. 2014;45(1):114–9. https://www.ncbi.nlm.nih.gov/pubmed/23803515. https://doi.org/10.1093/ejcts/ezt313.

    Article  PubMed  Google Scholar 

  74. Cerfolio RJ, Bryant AS, Eloubeidi MA. Accessing the aortopulmonary window (#5) and the paraaortic (#6) lymph nodes in patients with non-small cell lung cancer. Ann Thorac Surg. 2007;84(3):940–5. https://www.clinicalkey.es/playcontent/1-s2.0-S0003497507009289. https://doi.org/10.1016/j.athoracsur.2007.04.078.

    Article  PubMed  Google Scholar 

  75. Luh S, Liu H. Video-assisted thoracic surgery-the past, present status and the future. J Zhejiang Univ Sci B. 2006;7(2):118–28. https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=16731581-200602-7B-2-118-128-a. https://doi.org/10.1631/jzus.2006.B0118.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. Silvestri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferguson, T.L., Nadig, T.R., Silvestri, G.A. (2023). Lung Cancer Staging Methods: A Practical Approach. In: Díaz-Jiménez, J.P., Rodríguez, A.N. (eds) Interventions in Pulmonary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-22610-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22610-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22609-0

  • Online ISBN: 978-3-031-22610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics