Skip to main content

Electromagnetic Navigation: A Review

  • Chapter
  • First Online:
Interventions in Pulmonary Medicine
  • 625 Accesses

Abstract

Electromagnetic navigation (EMN) bronchoscopy has revolutionized the tissue acquisition for diagnosis of lung nodules. EMN-guided biopsy has increased the diagnostic yield of flexible bronchoscopy for the peripheral lung lesions. This system provides simultaneous guidance with steerable biopsy instruments to the pre-selected parenchymal lesion. To date, there are more than 60 clinical studies on EMN-guided biopsy. This clinical evidence supports the safety and effectiveness of this procedure. In addition to conventional fluoroscopy, there are several adjunct imaging techniques which can be used to augment the diagnostic yield of EMN-guided biopsy. These imaging techniques include radial probe ultrasound, augmented fluoroscopy, Tomosynthesis-based fluoroscopic navigation, and cone–beam computed tomography. Although the upfront cost of the EMN technology and instrumentation are relatively high, it significantly increases the overall diagnostic yield of the flexible bronchoscopy for diagnosis of pulmonary nodules. This innovation has also demonstrated its utility for certain therapeutic applications for lung cancer. In this chapter, we describe the brief history, prerequisite knowledge, procedural maneuvers, and limitations of EMN bronchoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CDC. NPCR and SEER—U.S. cancer statistics: public use database. Available www.cdc.gov/uscs. Accessed 12 December 2021.

  2. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.

    PubMed  Google Scholar 

  3. DiBardino DM, Yarmus LB, Semaan RW. Transthoracic needle biopsy of the lung. J Thorac Dis. 2015;7(Suppl 4):304–16.

    Google Scholar 

  4. Geraghty PR, Kee ST, McFarlane G, et al. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003;229(2):475–81.

    PubMed  Google Scholar 

  5. Yeow KM, Su IH, Pan KT, et al. Risk factors of pneumothorax and bleeding: multivariate analysis of 660 CT-guided coaxial cutting needle lung biopsies. Chest. 2004;126(3):748–54.

    PubMed  Google Scholar 

  6. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e142S–65S.

    PubMed  Google Scholar 

  7. Minezawa T, Okamura T, Yatsuya H, et al. Bronchus sign on thin-section computed tomography is a powerful predictive factor for successful transbronchial biopsy using endobronchial ultrasound with a guide sheath for small peripheral lung lesions: a retrospective observational study. BMC Med Imaging. 2015;15:21.

    PubMed  PubMed Central  Google Scholar 

  8. Mehta AC, Hood KL, Schwarz Y, Solomon SB. The evolutional history of electromagnetic navigation bronchoscopy: state of the art. Chest. 2018;154(4):935–47.

    PubMed  Google Scholar 

  9. Cicenia J, Avasarala SK, Gildea TR. Navigational bronchoscopy: a guide through history, current use, and developing technology. J Thorac Dis. 2020;12(6):3263–71.

    PubMed  PubMed Central  Google Scholar 

  10. Shepherd RW. Bronchoscopic pursuit of the peripheral pulmonary lesion: navigational bronchoscopy, radial endobronchial ultrasound, and ultrathin bronchoscopy. Curr Opin Pulm Med. 2016;22(3):257–64.

    PubMed  Google Scholar 

  11. Becker HD, Herth F, Ernst A, Schwarz Y. Bronchoshopic biopsy of peripheral lung lesions under electromagnetic guidance: a pilot study. J Bronchol. 2005;12:9–13.

    Google Scholar 

  12. Schwarz Y, Greif J, Becker HD, et al. Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest. 2006;129(4):988–94.

    PubMed  Google Scholar 

  13. Gildea TR, Mazzone PJ, Karnak D, et al. Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med. 2006;174(9):982–9.

    PubMed  PubMed Central  Google Scholar 

  14. Illumisite Platform. Recommended CT scan and reconstruction parameters. Illumisite. 2020. Available https://www.medtronic.com/content/dam/covidien/library/us/en/product/interventional-lung-solutions/illumisite-platform-scan-parameters-information-sheet.pdf. Accessed 29 December 2021.

  15. Orr L, Krochmal R, Sonti RM, et al. Comparison of the GenCut core biopsy system to transbronchial biopsy forceps for flexible bronchoscopic lung biopsy. J Bronchol Interv Pulmonol. 2021;29(2):140–5.

    Google Scholar 

  16. Karnak D, Ciledağ A, Ceyhan K, et al. Rapid on-site evaluation and low registration error enhance the success of electromagnetic navigation bronchoscopy. Ann Thorac Med. 2013;8(1):28–32. https://doi.org/10.4103/1817-1737.105716.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pickering EM, Kalchiem-Dekel O, Sachdeva A. Electromagnetic navigation bronchoscopy: a comprehensive review. AME Med J. 2018;3:117.

    Google Scholar 

  18. Verhoeven RLJ, Vos S, van der Heijden EHFM. Multi-modal tissue sampling in cone beam CT guided navigation bronchoscopy: comparative accuracy of different sampling tools and rapid on-site evaluation of cytopathology. J Thorac Dis. 2021;13(7):4396–406.

    PubMed  PubMed Central  Google Scholar 

  19. Chen A, Pastis N, Furukawa B, et al. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy. Chest. 2015;147(5):1275–81.

    PubMed  Google Scholar 

  20. Furukawa BS, Pastis NJ, Tanner NT, et al. Comparing pulmonary nodule location during electromagnetic bronchoscopy with predicted location on the basis of two virtual airway maps at different phases of respiration. Chest. 2018;153(1):181–6.

    PubMed  Google Scholar 

  21. Schwarz Y, Mehta AC, Ernst A, et al. Electromagnetic navigation during flexible bronchoscopy. Respiration. 2003;70(5):516–22.

    PubMed  Google Scholar 

  22. Hautmann H, Schneider A, Pinkau T, et al. Electromagnetic catheter navigation during bronchoscopy: validation of a novel method by conventional fluoroscopy. Chest. 2005;128(1):382–7.

    PubMed  Google Scholar 

  23. Makris D, Scherpereel A, Leroy S, et al. Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions. Eur Respir J. 2007;29(6):1187–92.

    CAS  PubMed  Google Scholar 

  24. Makris D, Gourgoulianis KI. Electromagnetic navigation diagnostic bronchoscopy and transbronchial biopsy. Chest. 2008;133(3):829–30.

    PubMed  Google Scholar 

  25. Eberhardt R, Anantham D, Ernst A, et al. Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. J Respir Crit Care Med. 2007;176:36–41.

    Google Scholar 

  26. Eberhardt R, Anantham D, Herth F, et al. Electromagnetic navigation diagnostic bronchoscopy in peripheral lung lesions. Chest. 2007;131(6):1800–5.

    PubMed  Google Scholar 

  27. Eberhardt R, Morgan RK, Ernst A, et al. Comparison of suction catheter versus forceps biopsy for sampling of solitary pulmonary nodules guided by electromagnetic navigational bronchoscopy. Respiration. 2010;79(1):54–60.

    PubMed  Google Scholar 

  28. Wilson DS, Barlett RJ. Improved diagnostic yield of bronchoscopy in a community practice: a combination of electromagnetic navigation system and rapid on-site evaluation. J Bronchol. 2007;14(4):227–32.

    Google Scholar 

  29. Lamprecht B, Porsch P, Pirich C, Studnicka M. Electromagnetic navigation bronchoscopy in combination with PET-CT and rapid on-site cytopathologic examination for diagnosis of peripheral lung lesions. Lung. 2009;187(1):55–9.

    PubMed  Google Scholar 

  30. Wang-Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142(2):385–93.

    PubMed  Google Scholar 

  31. Gex G, Pralong JA, Combescure C, et al. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration. 2014;87(2):165–76.

    PubMed  Google Scholar 

  32. Ost DE, Ernst A, Lei X, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. results of the AQuIRE registry. Am J Respir Crit Care Med. 2016;193(1):68–77.

    PubMed  PubMed Central  Google Scholar 

  33. Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol. 2018;14:445–58.

    PubMed  Google Scholar 

  34. Folch EE, Bowling MR, Pritchett MA, et al. NAVIGATE 24-month results: electromagnetic navigation bronchoscopy for pulmonary lesions at 37 centers in Europe and the United States. J Thorac Oncol. 2021;29:S1556.

    Google Scholar 

  35. Thiboutot J, Lee HJ, Silvestri GA, Chen A, et al. Study design and rationale: a multicenter, prospective trial of electromagnetic bronchoscopic and electromagnetic transthoracic navigational approaches for the biopsy of peripheral pulmonary nodules (ALL IN ONE trial). Contemp Clin Trials. 2018;71:88–95.

    PubMed  Google Scholar 

  36. Yarmus LB, Arias S, Feller-Kopman D, et al. Electromagnetic navigation transthoracic needle aspiration for the diagnosis of pulmonary nodules: a safety and feasibility pilot study. J Thorac Dis. 2016;8(1):186–94.

    PubMed  PubMed Central  Google Scholar 

  37. Moore C, Whang B, Wiener D, et al. Electromagnetic navigational bronchoscopy and EMN percutaneous transthoracic needle biopsy of the chest lesion: the first 102 consecutive early experience cases. Chest. 2019;156(4):1678.

    Google Scholar 

  38. Tay JH, Wallbridge PD, Larobina M, et al. Electromagnetic navigation bronchoscopy-directed pleural tattoo to aid surgical resection of peripheral pulmonary lesions. J Bronchol Interv Pulmonol. 2015;23(3):245–50.

    Google Scholar 

  39. Sun J, Mao X, Xie F, et al. Electromagnetic navigation bronchoscopy guided injection of methylene blue combined with hookwire for preoperative localization of small pulmonary lesions in thoracoscopic surgery. J Thorac Dis. 2015;7(12):E652–6.

    PubMed  PubMed Central  Google Scholar 

  40. Speicher JE, Bowling MR, Anciano CJ. Bronchoscopically placed dye marking for minimally invasive thoracic surgery: a surgeon’s perspective. Clin Pulm Med. 2017;24(6):239–49.

    Google Scholar 

  41. Andrade RS. Electromagnetic navigation bronchoscopy-guided thoracoscopic wedge resection of small pulmonary nodules. Semin Thorac Cardiovasc Surg. 2010;22(3):262–5.

    PubMed  Google Scholar 

  42. Minnich DJ, Bryant AS, Wei B, et al. Retention rate of electromagnetic navigation bronchoscopic placed fiducial markers for lung radiosurgery. Ann Thorac Surg. 2015;100(4):1163–5.

    PubMed  Google Scholar 

  43. Kupelian PA, Forbes A, Willoughby TR. Implantation and stability of metallic fiducials within pulmonary lesions. Int J Radiat Oncol Biol Phys. 2007;69(3):777–85.

    PubMed  Google Scholar 

  44. Sherwood JT, Brock MV. Lung cancer: new surgical approaches. Respirology. 2007;12(3):326–32.

    PubMed  Google Scholar 

  45. Anantham D, Feller-Kopman D, Shanmugham LN, et al. Electromagnetic navigation bronchoscopy-guided fiducial placement for robotic stereotactic radiosurgery of lung tumors: a feasibility study. Chest. 2007;132(3):930–5.

    PubMed  Google Scholar 

  46. Schroeder C, Hejal R, Linden PA. Coil spring fiducial markers placed safely using navigation bronchoscopy in inoperable patients allows accurate delivery of CyberKnife stereotactic radiosurgery. J Thorac Cardiovasc Surg. 2010;140:1137–42.

    PubMed  Google Scholar 

  47. Santos RS, Gupta A, Ebright MI, DeSimone M, Steiner G, Estrada MJ, Daly B, Fernando HC. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg. 2010;89:265–8.

    PubMed  Google Scholar 

  48. Eberhardt R, Kahn N, Herth FJ. ‘Heat and destroy’: bronchoscopic-guided therapy of peripheral lung lesions. Respiration. 2010;79(4):265–73.

    PubMed  Google Scholar 

  49. Grand DJ, Atalay MA, Cronan JJ, Mayo-Smith WW, Dupuy DE. CT-guided percutaneous lung biopsy: comparison of conventional CT fluoroscopy to CT fluoroscopy with electromagnetic navigation system in 60 consecutive patients. Eur J Radiol. 2011;79:e133–6.

    PubMed  Google Scholar 

  50. Ahmed M, Liu Z, Afzal KS, et al. Radiofrequency ablation: effect of surrounding tissue composition on coagulation necrosis in a canine tumor model. Radiology. 2004;230:761–7.

    PubMed  Google Scholar 

  51. Dupuy DE, Goldberg SN. Image-guided radiofrequency tumor ablation: challenges and opportunities – part II. J Vasc Interv Radiol. 2001;12:1135–48.

    CAS  PubMed  Google Scholar 

  52. Dupuy DE, Mayo-Smith WW, Abbott GF, DiPetrillo T. Clinical applications of radiofrequency tumor ablation in the thorax. Radiographics. 2002;22:S259–69.

    PubMed  Google Scholar 

  53. Sabath BF, Casal RF. Bronchoscopic ablation of peripheral lung tumors. J Thorac Dis. 2019;11(6):2628–38. https://doi.org/10.21037/jtd.2019.01.65.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration. 2017;94(3):293–8.

    PubMed  Google Scholar 

  55. Tsushima K, Koizumi T, Tanabe T, et al. Bronchoscopy-guided radiofrequency ablation as a potential novel therapeutic tool. Eur Respir J. 2007;29(6):1193–200.

    CAS  PubMed  Google Scholar 

  56. Mudambi L, Ost DE. Advanced bronchoscopic techniques for the diagnosis of peripheral pulmonary lesions. Curr Opin Pulm Med. 2016;22(4):309–18.

    PubMed  Google Scholar 

  57. Pritchett MA, Schampaert S, de Groot JAH, et al. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. J Bronchol Interv Pulmonol. 2018;25(4):274–82.

    Google Scholar 

  58. Karpman C, Midthun DE, Mullon JJ. A distal airway foreign body removed with electromagnetic navigation bronchoscopy. J Bronchol Interv Pulmonol. 2014;21(2):170–2.

    Google Scholar 

  59. Khan AY, Berkowitz D, Krimsky KS, et al. Safety of pacemakers and defibrillators in electromagnetic navigation bronchoscopy. Chest. 2013;143(1):75–81.

    PubMed  Google Scholar 

  60. Pritchett MA, Bhadra K, Calcutt M, Folch E. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J Thorac Dis. 2020;12(8):4593–5.

    PubMed  PubMed Central  Google Scholar 

  61. Strandberg A, Tokics L, Brismar B, et al. Atelectasis during anaesthesia and in the postoperative period. Acta Anaesthesiol Scand. 1986;30:154–8.

    CAS  PubMed  Google Scholar 

  62. Brismar B, Hedenstierna G, Lundquist H, et al. Pulmonary densities during anesthesia with muscular relaxation—a proposal of atelectasis. Anesthesiology. 1985;62:422–8.

    CAS  PubMed  Google Scholar 

  63. Casal RF, Sarkiss M, Jones AK, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis. 2018;10:6950–9.

    PubMed  PubMed Central  Google Scholar 

  64. Ferrari A, Bertolaccini L, Solli P, et al. Digital chest tomosynthesis: the 2017 updated review of an emerging application. Ann Transl Med. 2018;6:91.

    PubMed  PubMed Central  Google Scholar 

  65. Nelson G, Wu M, Hinkel C, et al. Improved targeting accuracy of lung tumor biopsies with scanning-beam digital X-ray tomosynthesis image guidance. Med Phys. 2016;43:6282.

    PubMed  PubMed Central  Google Scholar 

  66. Aboudara M, Roller L, Rickman O, et al. Improved diagnostic yield for lung nodules with digital tomosynthesisc orrected navigational bronchoscopy: Initial experience with a novel adjunct. Respirology. 2020;25:206–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danai Khemasuwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khemasuwan, D., Mehta, A.C. (2023). Electromagnetic Navigation: A Review. In: Díaz-Jiménez, J.P., Rodríguez, A.N. (eds) Interventions in Pulmonary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-22610-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22610-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22609-0

  • Online ISBN: 978-3-031-22610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics