Skip to main content

Early Lung Cancer: Methods for Detection

  • Chapter
  • First Online:
Interventions in Pulmonary Medicine

Abstract

Although the incidence and death due to lung cancer continue to decline in recent years, lung cancer is still the leading cause of death in North America. Screening, and early detection will be one of the most important clinical practices for improving lung cancer survival. Airway assessment by white light observation has been enhanced by developing new image sensors such as a high-resolution charge coupled device (CCD) and high-resolution complementary metal oxide semiconductor (CMOS). These new image sensors deliver the digital high magnification image as well. The techniques beyond white light observation have also been accepted in current clinical environment for early endobronchial malignancy detection and surveillance. Autofluorescence bronchoscopy (AFB) and narrow band imaging (NBI) are some of the advanced bronchoscopic imaging techniques capable of detecting preinvasive lesions currently available in clinical practice. These technologies allow to differentiate between pre-malignant and malignant lesions utilizing differential patterns of normal and pathological tissue autofluorescence or vasculature. Endocytoscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT) are still investigational, but these novel technologies will open a new avenue for more precise evaluation of bronchial epithelium as well as bronchial structure and it may contribute for very early detection of lung cancer.

The technology which received the most attention in interventional pulmonology over the past two decades was the development of endobronchial ultrasound. Endobronchial ultrasound allows advanced assessment of the airway as well as the mediastinum and peripheral lung nodules. The radial probe endobronchial ultrasound (EBUS) allows a more precise evaluation of newly detected preinvasive lesions within the airway. Optical coherence tomography is another new technology for more detailed observation of endobronchial structures. This chapter will review the advanced bronchoscopic imaging technologies for detection of early lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    PubMed  Google Scholar 

  2. The National Lung Screening Trial Research Team. Reduced lung cancer mortality with low-dose computed tomographic screening. NEJM. 2011;365:395–409.

    Google Scholar 

  3. Yasufuku K. Early diagnosis of lung cancer. Interv Pulmonol. 2010;31:40–7.

    Google Scholar 

  4. Nakajima T, Yasufuku K. Early lung cancer: methods for detection. Clin Chest Med. 2013;34:373–83.

    PubMed  Google Scholar 

  5. Niklinski J, Niklinski W, Chyczewskis L, et al. Molecular genetic abnormalities in premalignant lung lesions: biological and clinical implications. Eur J Cancer Prev. 2001;10:213–26.

    CAS  PubMed  Google Scholar 

  6. Thiberville L, Payne P, Vielkinds J, et al. Evidence of cumulative gene losses with progression of the premalignant epithelial lesions to carcinoma of the bronchus. Cancer Res. 1995;155:5133–9.

    Google Scholar 

  7. Alaa M, Shibuya K, Fujiwara T, et al. Risk of lung cancer in patients with preinvasive bronchial lesions followed by autofluorescence bronchoscopy and chest computed tomography. Lung Cancer. 2011;72:303–8.

    PubMed  Google Scholar 

  8. Venmans BJ, van Boxem TJ, Smith EF, et al. Outcome of bronchial carcinoma in situ. Chest. 2000;117:1572–6.

    CAS  PubMed  Google Scholar 

  9. Ikeda N, Hayashi A, Iwasaki K, et al. Comprehensive diagnostic bronchoscopy of central type early stage lung cancer. Lung Cancer. 2007;56:295–302.

    PubMed  Google Scholar 

  10. Lam S, Kennedy T, Unger M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest. 1998;113:696–702.

    CAS  PubMed  Google Scholar 

  11. van der Heijden EH, Hoefsloot W, van Hees HW, et al. High definition bronchoscopy: a randomized exploratory study of diagnostic value compared to standard white light bronchoscopy and autofluorescence bronchoscopy. Respir Res. 2015;16:33.

    PubMed  PubMed Central  Google Scholar 

  12. ASGE Technology Committee. Confocal laser endomicroscopy. Gastrointest Endosc. 2014;80:928–38.

    Google Scholar 

  13. Shibuya K, Fujiwara T, Yasufuku K, et al. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system. Lung Cancer. 2011;72:184–90.

    PubMed  Google Scholar 

  14. Keith RL, Miller YE, Gemmill RM, et al. Angiogrnic squamous dysplasia in bronchi of individuals at high risk for lung cancer. Clin Cancer Res. 2000;6:1616–25.

    CAS  PubMed  Google Scholar 

  15. Bolliger CT, Mathur PN. Interventional bronchoscopy. Progress in respiratory research, vol. 30. Cham: Kaarger; 2000. p. 243.

    Google Scholar 

  16. Colt H, Murgu S. Interventional bronchoscopy form bench to bedside: new techniques for early lung cancer detection. Interv Pulmonol. 2010;31:29–37.

    Google Scholar 

  17. He Q, Wang Q, Wu Q, et al. Value of autofluorescence imaging videobronchoscopy in detecting lung cancers and precancerous lesions: a review. Respir Care. 2013;58:2150–9.

    PubMed  Google Scholar 

  18. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9:568–77.

    PubMed  Google Scholar 

  19. Tajiri H, Niwa H. proposal for a consensus terminology in endoscopy: how should different endoscopic imaging techniques be grouped and defined? Endoscopy. 2008;40:775–8.

    CAS  PubMed  Google Scholar 

  20. Kaltenbach T, Sano Y, Friedland S, Soetikno R. American Gastroenterological Association (AGA) institute technology assessment on image-enhanced endoscopy. Gastroenterology. 2008;134:27–40.

    Google Scholar 

  21. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 2001;7:5–22.

    CAS  PubMed  Google Scholar 

  22. Shibuya K, Nakajima T, Fujiwara T, et al. Narrow band imaging with high-resoluton bronchovideoscopy: a new approach for visualizing angiogenesis in squamous cell carcinoma of the lung. Lung Cancer. 2010;69:194–202.

    PubMed  Google Scholar 

  23. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tomorigenesis. Cell. 1996;86:353–64.

    CAS  PubMed  Google Scholar 

  24. Hanahan D, Inoue H, Nagai K, Kawano T, et al. The hallmarks of cancer. Cell. 2000;100:57–70.

    CAS  PubMed  Google Scholar 

  25. Shibuya K, Hoshino H, Chiyo M, et al. Subepithelial vascular patterns in bronchial dysplasias using a high magnification bronchovideoscope. Thorax. 2002;57:902–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka H, Yamada G, Sakai T, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med. 2003;168:1495–9.

    PubMed  Google Scholar 

  27. Yahagi N, Fujimoto A, Horii J, et al. Dual red imaging: a novel endoscopic imaging technology visualizing thick blood vessels in the gastrointestinal wall. Endosc Int Open. 2019;7:E1632–5.

    PubMed  PubMed Central  Google Scholar 

  28. Furuichi Y, Gotoda T, Moriyasu F, et al. Dual red imaging (novel advanced endoscopy) can increase visibility and can predict the depth in diagnosing esophageal varices. J Gastroenterol. 2017;52:568–76.

    PubMed  Google Scholar 

  29. Naganuma M, Yahagi N, Bessho R, et al. Evaluation of the severity of ulcerative colitis using endoscopic dual red imaging targeting deep vessels. Endosc Int Open. 2017;5:E76–82.

    PubMed  PubMed Central  Google Scholar 

  30. Hürter T, Hanrath P. Endobronchial sonography: feasibility and preliminary results. Thorax. 1992;47:565–7.

    PubMed  PubMed Central  Google Scholar 

  31. Yasufuku K. Current clinical applications of endobronchial ultrasound. Expert Rev Respir Med. 2010;4:491–8.

    PubMed  Google Scholar 

  32. Kurimoto N, Murayama M, Yoshioka S, Nishisaka T. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion. Chest. 1999;115:1500–6.

    CAS  PubMed  Google Scholar 

  33. Ohtani K, Lee AM, Lam S. Frontiers in bronchoscopic imaging. Respirology. 2012;17:261–9.

    PubMed  Google Scholar 

  34. Lam S, Standish B, Baldwin C, et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin Cancer Res. 2008;14:2006–11.

    PubMed  PubMed Central  Google Scholar 

  35. Michel RG, Kinasewitz GT, Fung KM, et al. Optical coherence tomography as an adjunct to flexible bronchoscopy in the diagnosis of lung cancer: a pilot study. Chest. 2010;138:984–8.

    PubMed  Google Scholar 

  36. Wisnivesky JP, Yung RC, Mathur PN, et al. Diagnosis and treatment of bronchial intraepithelial neoplasia and early lung cancer of the central airways: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e263S–77S.

    PubMed  Google Scholar 

  37. Weigel TL, Yousem S, Dacic S, et al. Fluorescence bornchoscopic surveillance after curative surgical resection for non-small-cell lung cancer. Ann Surg Oncol. 2000;7:176–80.

    CAS  PubMed  Google Scholar 

  38. Sutedja TG, Codrington H, Risse EK, et al. Autofluorescence bronchoscopy improves staging of radiographically occult lung cancer and has an impact on therapeutic strategy. Chest. 2001;120:1327–32.

    CAS  PubMed  Google Scholar 

  39. Zaric B, Becker HD, Perin B, et al. Autofluorescence imaging videobronchoscopy improves assessment of tumor margins and affects therapeutic strategy in central lung cancer. Jpn J Clin Oncol. 2010;40:139–45.

    PubMed  Google Scholar 

  40. Spiro SG, Hackshaw A, LungSEARCH Collaborative Group. Research in progress–LungSEARCH: a randomised controlled trial of surveillance for the early detection of lung cancer in a high-risk group. Thorax. 2016;71:91–3.

    PubMed  Google Scholar 

  41. Spiro SG, Shah PL, Rintoul RC, et al. Sequential screening for lung cancer in a high-risk group: randomised controlled trial: LungSEARCH: a randomised controlled trial of Surveillance using sputum and imaging for the EARly detection of lung Cancer in a High-risk group. Eur Respir J. 2019;54:1900581.

    PubMed  PubMed Central  Google Scholar 

  42. Risse EK, Voojis GP, van’t Hoff MA. Diagnostic significance of ‘severe dysplasia’ in sputum cytology. Acta Cytol. 1988;32:629–34.

    CAS  PubMed  Google Scholar 

  43. Band PR, Feldstein M, Saccomanno G. Reversibility of bronchial marked atypia: implication for chemoprevention. Cancer Detect Prev. 1986;9:157–60.

    CAS  PubMed  Google Scholar 

  44. Sawyer RW, Hammond WG, Teplitz RL, et al. Regression of bronchial epithelial cancer in hamsters. Ann Thorac Surg. 1993;56:74–8.

    CAS  PubMed  Google Scholar 

  45. Breuer RH, Pasic A, Smith EF, et al. The natural course of preneoplastic lesions in bronchial epithelium. Clin Cancer Res. 2005;11:537–43.

    CAS  PubMed  Google Scholar 

  46. Vincent B, Fraig M, Silvestri G. A pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest. 2007;131:1794–9.

    PubMed  Google Scholar 

  47. Tremblay A, Taghizadeh N, McWilliams AM, et al. Low prevalence of high grade lesions detected with autofluorescence bronchoscopy in the setting of lung cancer screening in the pan-Canadian lung cancer screening study. Chest. 2016;150:1015–22.

    PubMed  Google Scholar 

  48. Ikeda N, Usuda J, Maehara S. Photodynamic therapy for central-type early-stage lung cancer. Gen Thorac Cardiovasc Surg. 2020;68:679–83.

    PubMed  Google Scholar 

  49. Van Rens M, Schramel F, Elbers J, et al. The clinical value of lung imaging autofluorescence endoscope for detecting synchronous lung cancer. Lung. 2001;32:13–8.

    Google Scholar 

  50. Sun J, Garfield D, Lam B. The role of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in diagnosis of intraepithelial neoplasia and invasive lung cancer. J Thorac Oncol. 2011;6:1336–44.

    PubMed  Google Scholar 

  51. Chiyo M, Shibuya K, Hoshino H, et al. Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung. 2005;48:307–13.

    Google Scholar 

  52. Thiberville L, Moreno-Swirc S, Vercauteren T, et al. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2007;175:22–31.

    PubMed  Google Scholar 

  53. Thiberville L, Salaun M, Lachkar S, et al. Confocal fluorescence endomicroscopy of the human airways. Proc Am Thorac Soc. 2009;6:444–9.

    PubMed  Google Scholar 

  54. Wellikoff AS, Holladay RC, Downie GH, et al. Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: a move toward optical biopsy. Respirology. 2015;20:967–74.

    PubMed  Google Scholar 

  55. Shah PL, Kemp SV, Newton RC, et al. Clinical correlation between real-time endocytoscopy, confocal endomicroscopy, and histopathology in the central airways. Respiration. 2017;93(1):51–7.

    PubMed  Google Scholar 

  56. Neumann H, Fuchs FS, Vieth M, et al. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther. 2011;33:1183–93.

    CAS  PubMed  Google Scholar 

  57. Neumann H, Vieth M, Neurath MF, et al. In vivo diagnosis of small-cell lung cancer by endocytoscopy. J Clin Oncol. 2011;29:e131–2.

    PubMed  Google Scholar 

  58. Short MA, Lam S, McWilliams AM, et al. Using laser Raman spectroscopy to reduce false positive of autofluorescence bronchoscopy. A pilot study. J Thorac Oncol. 2011;6:1206–14.

    PubMed  Google Scholar 

  59. Tu AT. Raman spectroscopy in biology: principles and applications. New York: Wiley; 1982.

    Google Scholar 

  60. McGregor HC, Short MA, McWilliams A, et al. Real-time endoscopic Raman spectroscopy for in vivo early lung cancer detection. J Biophotonics. 2016;10(1):98–110.

    PubMed  Google Scholar 

  61. Pahlevaninezhad H, Lee AM, Lam S, et al. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections. J Biomed Opt. 2014;19:36022.

    PubMed  Google Scholar 

  62. Pahlevaninezhad H, Lee AM, Ritchie A, et al. Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature. Biomed Opt Express. 2015;6:4191–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhai J. Multitarget fluorescence in situ hybridization assay for the detection of lung cancer in bronchial cytology specimens: a comparison with routine cytology. Diagn Cytopathol. 2015;43:819–24.

    PubMed  Google Scholar 

  64. Liu YZ, Jiang YY, Wang BS, et al. A panel of protein markers for the early detection of lung cancer with bronchial brushing specimens. Cancer Cytopathol. 2014;122:833–41.

    CAS  PubMed  Google Scholar 

  65. Silvestri GA, Vachani A, Whitney D, et al. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N Engl J Med. 2015;373:243–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Billatos E, Vick JL, Lenburg ME, et al. The airway transcriptome as a biomarker for early lung cancer detection. Clin Cancer Res. 2018;24(13):2984–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Wang Q, Feng J, et al. Comparison of autofluorescence imaging bronchoscopy and white light bronchoscopy for detection of lung cancers and precancerous lesions. Patient Prefer Adherence. 2013;7:621–31.

    PubMed  PubMed Central  Google Scholar 

  68. Sun S, Yang Y, Chen M, et al. Comparison of autofluorescence and white-light bronchoscopies performed with the Evis Lucera Spectrum for the detection of bronchial cancers: a meta-analysis. Transl Lung Cancer Res. 2020;9(1):23–32.

    PubMed  PubMed Central  Google Scholar 

  69. Furukawa K, Ikeda N, Miura T, et al. Is autofluorescence bronchoscopy needed to diagnose early bronchogenic carcinoma? Pro: autofluorescence bronchoscopy. J Bronchol. 2003;10:64–9.

    Google Scholar 

  70. Pierard P, Vermylen P, Bosschaerts T, et al. Synchronous roentgenographically occult lung carcinoma in patients with resectable primary lung cacncer. Chest. 2000;7:176–80.

    Google Scholar 

  71. Herth FJ, Eberhardt R, Anantham D, et al. Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J Thorac Oncol. 2009;4:1060–5.

    PubMed  Google Scholar 

  72. Iftikhar IH, Musani AI. Narrow-band imaging bronchoscopy in the detection of premalignant airway lesions: a meta-analysis of diagnostic test accuracy. Ther Adv Respir Dis. 2015;9:207–16.

    PubMed  Google Scholar 

  73. Zaric B, Perin B, Becker HD, et al. Combination of narrow band imaging (NBI) and autofluorescence imaging (AFI) videobronchoscopy in endoscopic assessment of lung cancer extension. Med Oncol. 2012;29:1638–42.

    PubMed  Google Scholar 

  74. Kumaji Y, Inoue H, Nagai H, et al. Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma. Endoscopy. 2002;34:369–75.

    Google Scholar 

  75. Shibuya K, Nakajima T, Fujiwara A, et al. Narrow band imaging with high-resolution bronchovideoscopy: a new approach for visualizing angiogenesis in squamous cell carcinoma of the lung. Lung. 2010;69:194–202.

    Google Scholar 

  76. Shibuya K, Nakajima T, Yasufuku K, et al. Narrow band imaging with high resolution bronchovideoscopy: a new approach to visualize angiogenesis in squamous cell carcinoma of the lung. Eur Respir J. 2006;28(Suppl 50):601.

    Google Scholar 

  77. Tanaka F, Muro K, Yamasaki S, et al. Evaluation of tracheo-bronchial wall invasion using transbronchial ultrasonography (TBUS). Eur J Cardiothorac Surg. 2000;17:570–4.

    CAS  PubMed  Google Scholar 

  78. Herth FJ, Becker HD. EBUS for early lung cancer detection. J Bronchol. 2003;10:249.

    Google Scholar 

  79. Miyazu Y, Miyazawa T, Kurimoto N, et al. Endobronchial ultrasonography in the assessment of centrally located early-stage lung cancer before photodynamic therapy. Am J Respir Crit Care Med. 2002;165:832–7.

    PubMed  Google Scholar 

  80. Tajiri H, Niwa H. A new classification and precise definitions of endoscopic imaging. Gastroenterol Endosc. 2009;51(8):1677–85.

    Google Scholar 

Download references

Acknowledgments

TN received honoraria and lecture fees from Olympus Corporation, and KY received unrestricted educational and research grant from Olympus Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yasufuku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, T., Yasufuku, K. (2023). Early Lung Cancer: Methods for Detection. In: Díaz-Jiménez, J.P., Rodríguez, A.N. (eds) Interventions in Pulmonary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-22610-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22610-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22609-0

  • Online ISBN: 978-3-031-22610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics