Skip to main content

Systemic Response to Injury

  • Chapter
  • First Online:
Textbook of Emergency General Surgery

Abstract

Regardless of the mechanism, severe traumatic injury initiates local and systemic inflammatory responses. The crux of the inflammatory response without pathogens is the detection of the damaged or dying “self”, which initiates a prompt response from the innate immune system. When overactivated and uncontrolled, systemic inflammatory response syndrome (SIRS) via innate cellular and humoral mechanisms can damage organs not involved in the primary injury and also compromise adaptive immune response and the process of regeneration. This in turn can lead to infectious complications, organ failure, and death. Accumulating evidence in recent years has demonstrated the important role of damage-associated molecular patterns (DAMPs) in the pathogenesis of the innate immune response to traumatic insults with potential new therapeutic interventions for attenuating the inflammatory response rather than the previously largely unsuccessful downstream cellular and molecular targets. Resuscitative measures in the trauma patient must serve to counteract SIRS, rather than exacerbating it with further tissue and physiological injury. End-organ hypoxia and hypoperfusion should be minimized, bleeding should be controlled as early as possible, volume replacement with crystalloid fluid should be minimized in favour of blood products, and timing and magnitude of surgery (as additional tissue injury) are paramount.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Injuries and violence. World Health Organization; 2021. https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence.

  2. Søreide K. Epidemiology of major trauma. Br J Surg. 2009;96(7):697–8.

    Article  PubMed  Google Scholar 

  3. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the global burden of disease study 2013. Inj Prev. 2016;22(1):3–18.

    Article  PubMed  Google Scholar 

  4. World Health Organization. Global status report on road safety 2018: summary. Geneva: World Health Organization; 2018.

    Google Scholar 

  5. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709.

    Article  PubMed  Google Scholar 

  6. Butcher N, Balogh Z. Update on the definition of polytrauma. Eur J Trauma Emerg Surg. 2014;40(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  7. Pape H-C, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, et al. The definition of polytrauma revisited: an international consensus process and proposal of the new ‘Berlin definition’. J Trauma Acute Care Surg. 2014;77(5):780–6.

    Article  PubMed  Google Scholar 

  8. Butcher N, Balogh ZJ. AIS> 2 in at least two body regions: a potential new anatomical definition of polytrauma. Injury. 2012;43(2):196–9.

    Article  PubMed  Google Scholar 

  9. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–45.

    Article  PubMed  Google Scholar 

  10. Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care. 2012;2(1):1–6.

    Article  Google Scholar 

  11. Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010;17(6):922–30.

    Article  Google Scholar 

  12. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg. 2020;46(4):751–75.

    Article  PubMed  Google Scholar 

  14. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  15. Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. J Br Surg. 2012;99(Supplement_1):12–20.

    Article  CAS  Google Scholar 

  16. Kovtun A, Messerer DA, Scharffetter-Kochanek K, Huber-Lang M, Ignatius A. Neutrophils in tissue trauma of the skin, bone, and lung: two sides of the same coin. J Immunol Res. 2018;2018:8173983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burk A-M, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hecke F, Schmidt U, Kola A, Bautsch W, Klos A, Kohl J. Circulating complement proteins in multiple trauma patients-correlation with injury severity, development of sepsis, and outcome. Crit Care Med. 1997;25(12):2015–24.

    Article  CAS  PubMed  Google Scholar 

  19. Hirsiger S, Simmen H-P, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediat Inflamm. 2012;2012:315941.

    Article  Google Scholar 

  20. Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock. 1998;10(2):79–89.

    Article  CAS  PubMed  Google Scholar 

  22. Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujishima S, Aikawa N. Neutrophil-mediated tissue injury and its modulation. Intensive Care Med. 1995;21(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371(3):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Inflammation and host response to injury, large scale collaborative research program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110(9):3507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adib-Conquy M, Cavaillon J-M. Compensatory anti-inflammatory response syndrome. Thromb Haemost. 2009;101(1):36–47.

    Article  CAS  PubMed  Google Scholar 

  27. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med. 2008;29(4):617–25, viii.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gentile LF, Cuenca AG, Efron PA, Ang D, McKinley BA, Moldawer LL, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Land WG. Use of DAMPs and SAMPs as therapeutic targets or therapeutics: a note of caution. Mol Diagn Ther. 2020;24(3):251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Butcher SK, Killampalli V, Lascelles D, Wang K, Alpar EK, Lord JM. Raised cortisol: DHEAS ratios in the elderly after injury: potential impact upon neutrophil function and immunity. Aging Cell. 2005;4(6):319–24.

    Article  CAS  PubMed  Google Scholar 

  32. Wade C, Lindberg J, Cockrell J, Lamiell J, Hunt M, Ducey J, et al. Upon-admission adrenal steroidogenesis is adapted to the degree of illness in intensive care unit patients. J Clin Endocrinol Metabol. 1988;67(2):223–7.

    Article  CAS  Google Scholar 

  33. Lu J, Goh SJ, Tng P, Deng YY, Ling E-A, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci. 2009;14(1):3795–813.

    Article  CAS  Google Scholar 

  34. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6(10):775–86.

    Article  CAS  PubMed  Google Scholar 

  35. Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–34.

    Article  CAS  PubMed  Google Scholar 

  36. Trifunovic A, Larsson NG. Mitochondrial dysfunction as a cause of ageing. J Intern Med. 2008;263(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  37. Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P, Sembongi H, et al. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion. 2007;7(5):311–21.

    Article  CAS  PubMed  Google Scholar 

  38. Tuboly E, McIlroy D, Briggs G, Lott N, Balogh ZJ. Clinical implications and pathological associations of circulating mitochondrial DNA. Front Biosci (Landmark Ed). 2017;22(6):1011–22.

    Article  CAS  PubMed  Google Scholar 

  39. Simmons JD, Lee YL, Mulekar S, Kuck JL, Brevard SB, Gonzalez RP, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg. 2013;258(4):591–6; discussion 6–8.

    Article  PubMed  Google Scholar 

  40. Xie L, Liu S, Cheng J, Wang L, Liu J, Gong J. Exogenous administration of mitochondrial DNA promotes ischemia reperfusion injury via TLR9-p38 MAPK pathway. Regul Toxicol Pharmacol. 2017;89:148–54.

    Article  CAS  PubMed  Google Scholar 

  41. Gu X, Wu G, Yao Y, Zeng J, Shi D, Lv T, et al. Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway. Free Radic Biol Med. 2015;83:149–58.

    Article  CAS  PubMed  Google Scholar 

  42. Gu X, Yao Y, Wu G, Lv T, Luo L, Song Y. The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome. PLoS One. 2013;8(8):e72834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamanouchi S, Kudo D, Yamada M, Miyagawa N, Furukawa H, Kushimoto S. Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status. J Crit Care. 2013;28(6):1027–31.

    Article  CAS  PubMed  Google Scholar 

  44. Thurairajah K, Briggs GD, Balogh ZJ. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. Eur J Trauma Emerg Surg. 2018;44(3):325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14):2173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu Q, Ren H, Ren J, Liu Q, Wu J, Wu X, et al. Released mitochondrial DNA following intestinal ischemia reperfusion induces the inflammatory response and gut barrier dysfunction. Sci Rep. 2018;8(1):1–11.

    Google Scholar 

  47. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stowe DF, Camara AKS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11(6):1373–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogunbileje JO, Porter C, Herndon DN, Chao T, Abdelrahman DR, Papadimitriou A, et al. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma. Am J Physiol Endocrinol Metab. 2016;311(2):E436–E48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.

    Article  CAS  PubMed  Google Scholar 

  52. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89.

    Article  CAS  PubMed  Google Scholar 

  53. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44.

    Article  CAS  PubMed  Google Scholar 

  54. McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29(6):1133.e1–5.

    Article  CAS  PubMed  Google Scholar 

  55. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–47.

    Article  CAS  PubMed  Google Scholar 

  56. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Article  CAS  PubMed  Google Scholar 

  57. Gögenur M, Burcharth J, Gögenur I. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit: a systematic review. Crit Care. 2017;21(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stortz JA, Hawkins RB, Holden DC, Raymond SL, Wang Z, Brakenridge SC, et al. Cell-free nuclear, but not mitochondrial, DNA concentrations correlate with the early host inflammatory response after severe trauma. Sci Rep. 2019;9(1):13648.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lehmann R, Beekley A, Casey L, Salim A, Martin M. The impact of advanced age on trauma triage decisions and outcomes: a statewide analysis. Am J Surg. 2009;197(5):571–5.

    Article  PubMed  Google Scholar 

  60. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

    Article  CAS  PubMed  Google Scholar 

  62. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12):875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D, et al. Adrenal aging and its implications on stress responsiveness in humans. Front Endocrinol. 2019;10:54.

    Article  Google Scholar 

  64. NeSmith EG, Weinrich SP, Andrews JO, Medeiros RS, Hawkins ML, Weinrich MC. Demographic differences in systemic inflammatory response syndrome score after trauma. Am J Crit Care. 2012;21(1):35–41.

    Article  PubMed  Google Scholar 

  65. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giannoudis P, Van Griensven M, Tsiridis E, Pape H. The genetic predisposition to adverse outcome after trauma. J Bone Joint Surg. 2007;89(10):1273–9.

    Article  CAS  Google Scholar 

  67. Eskdale J, Gallagher G, Verweij CL, Keijsers V, Westendorp RG, Huizinga TW. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci. 1998;95(16):9465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87(3):978–82.

    Article  CAS  PubMed  Google Scholar 

  69. Pulsinelli WA, Levy DE, Sigsbee B, Scherer P, Plum F. Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med. 1983;74(4):540–4.

    Article  CAS  PubMed  Google Scholar 

  70. Malmberg K, Rydén L, Hamsten A, Herlitz J, Waldenström A, Wedel H. Mortality prediction in diabetic patients with myocardial infarction: experiences from the DIGAMI study. Cardiovasc Res. 1997;34(1):248–53.

    Article  CAS  PubMed  Google Scholar 

  71. Thourani VH, Weintraub WS, Stein B, Gebhart SS, Craver JM, Jones EL, et al. Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg. 1999;67(4):1045–52.

    Article  CAS  PubMed  Google Scholar 

  72. Ahmad R, Cherry RA, Lendel I, Mauger DT, Service SL, Texter LJ, et al. Increased hospital morbidity among trauma patients with diabetes mellitus compared with age- and injury severity score–matched control subjects. Arch Surg. 2007;142(7):613–8.

    Article  PubMed  Google Scholar 

  73. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3–4):259–65.

    Article  CAS  PubMed  Google Scholar 

  74. Calvet HM, Yoshikawa TT. Infections in diabetes. Infect Dis Clin North Am. 2001;15(2):407–21, viii.

    Article  CAS  PubMed  Google Scholar 

  75. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  76. Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. 2003;290(15):2041–7.

    Article  CAS  PubMed  Google Scholar 

  77. Stein DM, Jessie EM, Crane S, Kufera JA, Timmons T, Rodriguez CJ, et al. Hyperacute adrenal insufficiency after hemorrhagic shock exists and is associated with poor outcomes. J Trauma Acute Care Surg. 2013;74(2):363–70.

    Article  CAS  PubMed  Google Scholar 

  78. Cohan P, Wang C, McArthur DL, Cook SW, Dusick JR, Armin B, et al. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med. 2005;33(10):2358–66.

    Article  CAS  PubMed  Google Scholar 

  79. Annane D, Sébille V, Charpentier C, Bollaert PE, François B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.

    Article  CAS  PubMed  Google Scholar 

  80. McIlroy DJ, Bigland M, White AE, Hardy BM, Lott N, Smith DW, et al. Cell necrosis-independent sustained mitochondrial and nuclear DNA release following trauma surgery. J Trauma Acute Care Surg. 2015;78(2):282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roberts CS, Pape H-C, Jones AL, Malkani AL, Rodriguez JL, Giannoudis PV. Damage control orthopaedics: evolving concepts in the treatment of patients who have sustained orthopaedic trauma. JBJS. 2005;87(2):434–49.

    Article  Google Scholar 

  82. Pape H-C, Hildebrand F, Pertschy S, Zelle B, Garapati R, Grimme K, et al. Changes in the management of femoral shaft fractures in polytrauma patients: from early total care to damage control orthopedic surgery. J Trauma Acute Care Surg. 2002;53(3):452–62.

    Article  Google Scholar 

  83. Puyo CA, Peruzzi D, Earhart A, Roller E, Karanikolas M, Kollef MH, et al. Endotracheal tube-induced sore throat pain and inflammation is coupled to the release of mitochondrial DNA. Mol Pain. 2017;13:1744806917731696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sandler N, Kaczmarek E, Itagaki K, Zheng Y, Otterbein L, Khabbaz K, et al. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation. Heart Lung Circulation. 2018;27(1):122–9.

    Article  PubMed  Google Scholar 

  85. Maher DP, Walia D, Heller NM. Suppression of human natural killer cells by different classes of opioids. Anesth Analg. 2019;128(5):1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mitsui Y, Hou L, Huang X, Odegard KC, Pereira LM, Yuki K. Volatile anesthetic sevoflurane attenuates toll-like receptor 1/2 activation. Anesth Analg. 2019;131(2):631–9.

    Article  Google Scholar 

  87. Olldashi F, Kerçi M, Zhurda T, Ruçi K, Banushi A, Traverso MS, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  PubMed  Google Scholar 

  88. Roquilly A, Mahe PJ, Seguin P, Guitton C, Floch H, Tellier AC, et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA. 2011;305(12):1201–9.

    Article  CAS  PubMed  Google Scholar 

  89. CRASH Trial Collaborators. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury—outcomes at 6 months. Lancet. 2005;365(9475):1957–9.

    Article  Google Scholar 

  90. D’Amico R, Pifferi S, Leonetti C, Torri V, Tinazzi A, Liberati A. Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomised controlled trials. BMJ. 1998;316(7140):1275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gosselin RA, Roberts I, Gillespie WJ. Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst Rev. 2004;2004(1):CD003764.

    PubMed  PubMed Central  Google Scholar 

  92. Bernard GR, Vincent J-L, Laterre P-F, LaRosa SP, Dhainaut J-F, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.

    Article  CAS  PubMed  Google Scholar 

  93. Vassar M, Fletcher M, Perry C, Holcroft JW. Evaluation of prostaglandin E1 for prevention of respiratory failure in high risk trauma patients: a prospective clinical trial and correlation with plasma suppressive factors for neutrophil activation. Prostaglandins Leukot Essent Fat Acids. 1991;44(4):223–31.

    Article  CAS  Google Scholar 

  94. Collier BR, Giladi A, Dossett LA, Dyer L, Fleming SB, Cotton BA. Impact of high-dose antioxidants on outcomes in acutely injured patients. J Parenter Enter Nutr. 2008;32(4):384–8.

    Article  CAS  Google Scholar 

  95. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1: 1: 1 vs a 1: 1: 2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schött U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016;24(1):1–8.

    Article  Google Scholar 

  97. Bochicchio GV, Napolitano L, Joshi M, Bochicchio K, Meyer W, Scalea TM. Outcome analysis of blood product transfusion in trauma patients: a prospective, risk-adjusted study. World J Surg. 2008;32(10):2185.

    Article  PubMed  Google Scholar 

  98. Malone DL, Dunne J, Tracy JK, Putnam AT, Scalea TM, Napolitano LM. Blood transfusion, independent of shock severity, is associated with worse outcome in trauma. J Trauma Acute Care Surg. 2003;54(5):898–907.

    Article  Google Scholar 

  99. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med. 2008;358(12):1229–39.

    Article  CAS  PubMed  Google Scholar 

  100. Andreasen JJ, Dethlefsen C, Modrau IS, Baech J, Schonheyder HC, Moeller JK, et al. Storage time of allogeneic red blood cells is associated with risk of severe postoperative infection after coronary artery bypass grafting. Eur J Cardiothorac Surg. 2011;39(3):329–34.

    Article  PubMed  Google Scholar 

  101. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88.

    Article  CAS  PubMed  Google Scholar 

  102. Rhee P, Wang D, Ruff P, Austin B, DeBraux S, Wolcott K, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  103. Makley AT, Goodman MD, Friend LAW, Deters JS, Johannigman JA, Dorlac WC, et al. Resuscitation with fresh whole blood ameliorates the inflammatory response after hemorrhagic shock. J Trauma. 2010;68(2):305–11.

    PubMed  PubMed Central  Google Scholar 

  104. Neal MD, Hoffman MK, Cuschieri J, Minei JP, Maier RV, Harbrecht BG, et al. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. J Trauma Acute Care Surg. 2012;72(4):892–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. Crit Care. 2017;21(1):160.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt J. Balogh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobson, P.F., Muller, K., Balogh, Z.J. (2023). Systemic Response to Injury. In: Coccolini, F., Catena, F. (eds) Textbook of Emergency General Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-22599-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22599-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22598-7

  • Online ISBN: 978-3-031-22599-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics